Electric Charge and the Electric Field (Ch 26) - PowerPoint PPT Presentation

1 / 68
About This Presentation
Title:

Electric Charge and the Electric Field (Ch 26)

Description:

Electric Charge and the Electric Field (Ch 26) Four Fundamental Forces Electromagnetic Gravity Strong Nuclear Force Weak Nuclear Force Ans: E = 4.5 X 106 N/C at an ... – PowerPoint PPT presentation

Number of Views:200
Avg rating:3.0/5.0
Slides: 69
Provided by: jfre82
Category:

less

Transcript and Presenter's Notes

Title: Electric Charge and the Electric Field (Ch 26)


1
Electric Charge and the Electric Field (Ch 26)
  • Four Fundamental Forces
  • Electromagnetic
  • Gravity
  • Strong Nuclear Force
  • Weak Nuclear Force

2
Electric Charge
  • Electricity Elektron (amber)
  • Amber (tree resin) gets a charge when rubbed with
    cloth
  • Ben Franklin
  • Positive Charge on a rubber rod
  • Negative Charge on an amber/plastic rod

3
(No Transcript)
4
Electric Charge
  • Law of conservation of charge Charge is never
    created or destroyed

Cloth
-
-
-
-
-
-





Rubber rod
5
Insulators/Conductors
Insulators Semiconductors Conductors
Do not conduct electricity Conduct electricity, but only at a higher voltage Conduct electricity well
Small atoms Electrons tightly held Non-Metals Medium atoms Electrons held medium Metalloids Large atoms Electrons not tightly held Metals
6
(Discuss movement of the electrons)
7
Conduction
  • Transfer of charge by touching
  • Electrons can flow between substances
  • Can produce a net charge on the substance

8
Induction
  • Transfer of charge without touching
  • Electrons migrate within the substance to cause a
    separation of charge
  • Net charge on substance is still zero

9
Induction Grounding
  • Only way to produce a net charge by induction
  • Earth can easily absorb or donate electrons
  • Electrons can leave a substance, then break the
    ground

10
Electroscope
11
Charging the electroscope
by induction by conduction (charge
separation) (net charge)
12
Using the electroscope
  • Can be used to detect the charge on a substance
  • (Must charge electroscope first)

13
Coulombs Law
  • Coloumb experimented to determine magnitude of
    electromagnetic force
  • Measured the forces between charged spheres
    (angle of deflection).

14
  • F k Q1Q2
  • r2
  • F Force
  • k 9.0 X 109 N-m/C2 (proportionality constant)
  • Q Charge (C)
  • r Radius (m)
  • Varies with inverse-square of the radius(distance)

15
The Coulomb
  • 1 Coulomb 1 Amperesecond
  • Unit of charge
  • Point charges small objects (charge doesnt get
    distributed much)
  • Elementary Charge
  • Charge on the electron and proton
  • Quantized (cant have ½ an electron)
  • e 1.602 X 10-19 C

16
  • Determine the magnitude of the force between a
    proton and an electron in a hydrogen atom.
    Assume the distance from the electron to the
    nucleus is 0.53 X 10-10 m. (8.2 X 10-8 N)


-
17
  • Calculate the force between an electron and the
    three protons in a Li atom if the distance is
    about 1.3 X 10-10 m. (3.9 X 10-8 N)

18
  • Three charged particles are arranged in a
    straight line as shown in the diagram. Calculate
    the net force on particle 3. (-1.5 to the left)

0.30 m
0.20 m
-
-

Q1 -8.0 mC Q2 3.0 mC Q3 -4.0 mC
19
  • F k Q1Q2
  • r2
  • F31 (9.0 X 109 N-m2/C2 )(4.0X 10-6 C)(8.0X10-6
    C)
  • (0.50 m)2
  • F31 1.2 N (Repulsive to the right)
  • F32 (9.0 X 109 N-m2/C2 )(4.0X 10-6 C)(3.0X10-6
    C)
  • (0.20 m)2
  • F32 2.7 N (Attractive to the left)

20
  • Fnet F31 - F32
  • Fnet 1.2 N 2.7 N -1.5 to the left

21
  • Three charges are in a line. The first is 2.00
    mC. The second is -2.50 mC at 25 cm. The third
    charge is 2.00 mC at the 40 cm mark.
  • Calculate the net force on the center charge.
  • Will the center charge move to the left or right?

22
  • Three charges are in a line. The first is 3.00
    mC. The second is -2.00 mC at 5 cm. Where
    should a the third charge (4.0 mC) be placed so
    the middle charge does not move?

23
  • Three charges are in a line. The first is -10.00
    mC. The second is -15.00 mC at 100 cm. Where
    should a middle charge (20.0 mC) be placed so it
    does not move?

24
Coulombs Law Ex 4
  • What is the resultant force on charge q3 if the
    charges are arranged as shown below. The
    magnitudes of the charges are
  • q1 6.00 X 10-9 C
  • q2 -2.00 X 10-9 C
  • q3 5.00 X 10-9 C

25
4.00 m

-
q2
q3
37o
3.00 m
5.00 m

q1
26
  • First calculate the forces on q3 separately
  • F13 k Q1Q3
  • r2
  • F13 (9.0 X 109 N-m2/C2)(6.00 X 10-9 C)(5.00 X
    10-9 C)
  • (5.00m )2
  • F13 1.08 X 10-8 N

27
  • F23 k Q2Q3
  • r2
  • F23 (9.0 X 109 N-m2/C2)(2.00 X 10-9 C)(5.00 X
    10-9 C)
  • (4.00m )2
  • F23 5.62 X 10-9 N

28
F13 1.08 X 10-8 N
F23 5.62 X 10-9 N
37o

-
q2
q3
37o

q1
29
  • F13x F13cos37o (1.08 X 10-8 N)cos37o
  • F13x 8.63 X 10-9 N
  • F13y F13sin37o (1.08 X 10-8 N)sin37o
  • F13y 6.50 X 10-9 N
  • Fx F23 F13x
  • Fx -5.62 X 10-9 N 8.63 X 10-9 N 3.01 X
    10-9 N
  • Fy F13y 6.50 X 10-9 N

30
  • Fx 3.01 X 10-9 N
  • Fy 6.50 X 10-9 N
  • FR \/ (3.01 X 10-9 N)2 (6.50 X 10-9 N)2
  • FR 7.16 X 10-9 N
  • sin q Fy/FR
  • sin q (6.50 X 10-9 N)/ (7.16 X 10-9 N)
  • q 64.7o

FR
Fy
Fx
q
-
31
Coulombs Law Ex 5
  • Calculate the net electrostatic force on charge
    Q3 as shown in the diagram

Q3 65 mC

60 cm
30 cm
30o

-
Q2 50 mC
Q1 -86 mC
32
  • First calculate the forces on Q3 separately
  • F13 k Q1Q3
  • r2
  • F13 (9.0 X 109 N-m2/C2)(65 X 10-6 C)(86 X 10-6
    C)
  • (0.60 m )2
  • F13 140 N
  • F23 (9.0 X 109 N-m2/C2)(65 X 10-6 C)(50 X 10-6
    C)
  • (0.30 m )2
  • F23 330 N

33
F23

Q3
F13
30o

-
Q2
Q1
34
  • F13x F13cos30o (140 N)cos30o
  • F13x 120 N
  • F13y -F13sin30o (140 N)sin30o
  • F13y -70 N
  • Fx F13x 120 N
  • F7 330 N - 70 N 260 N

35
  • Fx 120 N
  • Fy 260 N
  • FR \/ (120 N)2 (330 N)2
  • FR 290 N
  • sin q Fy/FR
  • sin q (260 N)/ (290 N)
  • q 64o

FR
Fy
Fx
q
-
36
  • A small plastic bead has a mass of 15 mg and a
    charge of -10 nC (nano 10-9). A glass rod of
    charge 10 nC is held 1.0 cm above the bead.
  • Calculate the electric field strength of the rod
    at the position of the bead.
  • Calculate the force on the bead.
  • Will the bead leap off the table?

37
Calculus Example 1
  • Calculate the force on charge q from the charged
    rod shown below. The charge per unit length of
    the rod is l Q/l

38
  • F kqQ
  • x2
  • dF kqdQ dQ ldx
  • x2
  • dF kqldx
  • x2
  • F kql ? dx (from a to al)
  • x2
  • F -kql 1 a l
  • x a

39
  • F -kql 1 a l
  • x a
  • F -kql 1 - l
  • a1 a
  • F kqll
  • a(a1)

40
Calculus Ex 2
  • A total positive charge of Q is evenly
    distributed on a semicircular ring of radius R.
    Calculate the force felt by the charge q at the
    center of the semicircle.

41
  • F kqQ
  • R2
  • However, x-components cancel
  • Fy Fsinq
  • Fy kqQ sinq
  • R2
  • Break into a small unit of force
  • dFy kqdQ sinq
  • R2

42
  • l Q/pR
  • dQ lds
  • s Rq
  • dQ l Rdq
  • dFy kq lR sinq dq
  • R2

43
  • Fy kq l - cosq p
  • R 0
  • Fy 2kq l
  • R

44
Electric Field
  • Contact forces
  • Friction
  • Pushes and pulls
  • Forces at a distance
  • Gravity
  • Electromagnetism
  • Field Invisible lines that extend from a body

45
  • Proton

A positive test charge would be repelled by the
field


46
  • Electron

A positive test charge would be attracted by the
field

-
47
  • Opposite charges attract

48
  • Like Charges repel

49
  • E in terms of a test charge
  • E F
  • q
  • Vector quantity
  • Force that the test charge q would feel. The
    smaller the charge, the larger the Force

50
  • E in terms of a point charge
  • E kQ
  • r2
  • Vector quantity
  • Point charge is the source charge producing the
    electric field
  • k 1/ 4pe0
  • e0 8.85 X 10-12 C2/Nm2 (permittivity constant)

51
Electric Field Example 1
  • Find the electric force on a proton placed in an
    electric field of 2.0 X 104 N/C
  • E F
  • q
  • F qE
  • F (1.602 X 10-19 C)(2.0 X 104 N/C)
  • F 3.2 X 10-15N

52
Electric Field Example 2
  • Calculate the magnitude and direction of an
    electric field at a point 30 cm from a source
    charge of Q -3.0 X 10-6 C.
  • E kQ
  • r2
  • E (9.0 X 109 N-m2/C2)(3.0 X 10-6 C)
  • (0.30 m)2
  • E 3.05 X 105 N/C towards the charge

53
  • What electric field is required for a copier to
    carry toner particles of mass 9.0 X 10-16 kg.
    Each particle carries 20 electrons to provide the
    test charge.
  • Assume the copier must overcome twice the weight
    of each particle.

54
  • E F
  • q
  • F 2mg (twice the weight)
  • E 2mg (2)(9.0 X 10-16 kg)(9.8m/s2)
  • q (20)(1.602X10-19C)
  • E 5500 N/C

55
Electric Field Example 3
  • Two point charges are separated by a distance of
    10.0 cm. What is the magnitude and direction of
    the electric field at point P, 2.0 cm from the
    negative charge?

2 cm
8 cm
P
-

Q1 -25 mC
Q2 50 mC
56
E2
E1
2 cm
8 cm
P
-

Q1 -25 mC
Q2 50 mC
57
  • E E1 E2 (both point to the left)
  • E kQ
  • r2
  • E1 (9.0 X 109 N-m2/C2)(25 X 10-6 C) (0.020
    m)2
  • E1 5.625 X 108 N/C
  • E2 (9.0 X 109 N-m2/C2)(50 X 10-6 C) (0.080
    m)2
  • E2 7.031 X 107 N/C
  • E E1 E2 6.3 X 108 N/C

58
Electric Field Example 3a
  • What acceleration would an electron feel if it
    were placed at point P? Would it move to the
    right or the left? An electron has a mass of 9.1
    X 10-31 kg.

E2
E1
2 cm
8 cm
P
-

Q1 -25 mC
Q2 50 mC
59
  • E F
  • q
  • F ma
  • E ma
  • q
  • a Eq/m
  • a (6.3 X 108 N/C)(1.602 X 10-19 C)
  • (9.1 X 10-31 kg)
  • a 1.1 X 1020 m/s2

60
Electric Field Example 4
  • Charge Q1 7.00 mC is placed at the origin.
    Charge Q2 -5.00 mC is placed 0.300 m to the
    right. Calculate the electric field at point P,
    0.400 m above the origin.

P
0.400 m
0.300 m
-

Q1 7.00 mC
Q2 -5.00 mC
61
P
0.400 m
c 0.500 m
q
0.300 m
-

Q1 7.00 mC
Q2 -5.00 mC
c2 a2 b2 c2 (0.400 m)2 (0.300 m)2 c
0.500 m tan q opp/adj 0.400/0.300 q 53.1o
62
  • E kQ
  • r2
  • E1 (9.0 X 109 N-m2/C2)(7.00 X 10-6 C) (0.400
    m)2
  • E1 3.94 X 105 N/C
  • E2 (9.0 X 109 N-m2/C2)(5.00 X 10-6 C) (0.500
    m)2
  • E2 1.80 X 105 N/C

63
E1
E2x
P
E2
E2y
q
-

E2x E2cosq (1.80 X 105 N/C)(cos 53.1o) E2x
1.08 X 105 N/C (to the right) E2y E2sinq
(1.80 X 105 N/C)(sin 53.1o) E2y -1.44 X 105 N/C
(down)
64
  • Ex E2x
  • Ex 1.08 X 105 N/C (to the right)
  • Ey E1 E2y
  • Ey 3.94 X 105 N/C -1.44 X 105 N/C
  • Ey 2.49 X 105 N/C
  • ER2 (1.08 X 105 N/C )2 (2.49 X 105 N/C)2
  • ER 2.72 X 105 N/C
  • tan f Ey/Ex 2.49 X 105/ 1.08 X 105
  • f 66.6o

f
P
65
Electric Field Example 5
  • Calculate the electric field at point A, as shown
    in the diagram

A
30 cm
52 cm
-

Q1 50.0 mC
Q2 -50.0 mC
66
  • Ans E 4.5 X 106 N/C at an angle of 76o

67
Electric Field Example 6
  • Calculate the electric field at point B, as shown
    in the diagram.

B
30 cm
26 cm
26 cm
-

Q1 50.0 mC
Q2 -50.0 mC
68
  • Ans E 3.6 X 106 N/C along the x direction
Write a Comment
User Comments (0)
About PowerShow.com