Micronutrient Requirements and Deficiencies - PowerPoint PPT Presentation

Loading...

PPT – Micronutrient Requirements and Deficiencies PowerPoint presentation | free to download - id: 69c3b4-MGUyN



Loading


The Adobe Flash plugin is needed to view this content

Get the plugin now

View by Category
About This Presentation
Title:

Micronutrient Requirements and Deficiencies

Description:

Micronutrient Requirements and Deficiencies Douglas L. Seidner, MD, FACG The Cleveland Clinic Digestive Disease Center Composition of Body Fluids Sodium (Na) Total ... – PowerPoint PPT presentation

Number of Views:4
Avg rating:3.0/5.0
Date added: 2 July 2019
Slides: 42
Provided by: DougSe9
Learn more at: http://www.gastrodev.org
Category:

less

Write a Comment
User Comments (0)
Transcript and Presenter's Notes

Title: Micronutrient Requirements and Deficiencies


1
Micronutrient Requirements and Deficiencies
  • Douglas L. Seidner, MD, FACG
  • The Cleveland Clinic
  • Digestive Disease Center

2
The ASPEN Nutrition Support Core Curriculum 2007
3
The ASPEN Nutrition Support Core Curriculum 2007
4
Composition of Body Fluids
Na K Cl- HCO3-
Plasma 135-150 3.5-5 98-106 22-30
Gastric 10-150 4-12 120-160 0
Bile 120-170 3-12 80-120 30-40
Sml Int 80-150 2-8 70-130 20-40
Diarrhea 25-130 10-60 20-90 20-50
5
(No Transcript)
6
Sodium (Na)
  • Total body Na is 40 mEq/kg (280 mEq in a 70 kg
    patient)
  • One third fixed in bone
  • Two thirds exchangeable (mostly extracellular)
  • Normal daily adult Na requirement is 1-2 mEq/kg
  • Renal Na reabsorption efficient (lt 1mEq/L)

7
Sodium (Na)
  • Extracellular ion
  • Usual dose 100-150 mEq/d
  • This approximates 0.45NS
  • Added as acetate or chloride salt
  • Sodium Deficit
  • 0.6 x (wt in kg) x (140 Na) (140) x (Vol
    deficit in L)

8
Hyponatremia
  • Primary due to sodium loss
  • Secondary due to excess of free water (most
    common)

9
Primary Hyponatremia
  • GI losses
  • Fistula drainage
  • Use of diuretics
  • Adrenal insufficiency

10
Secondary Hyponatremia
  • Infusion of hypotonic solutions
  • Excess ingestion of free water
  • Increased reabsorption of free water (ADH)

11
Symptomatic Hyponatremia
  • Chronic hyponatremia usually asymptomatic until
    Na lt 110-120 mEq/L
  • Acute hyponatremia can become symptomatic if Na lt
    120-130 mEq/L

12
Symptoms of Hyponatremia
  • Headaches
  • Confusion
  • Delirium
  • Seizures
  • Coma

13
Acute Hypotonic Hyponatremia (acute water
intoxication lt24hrs)
  • lt 125 mEq/L headache, apathy, nausea, confusion
  • lt 115 mEq/L seizures, coma

14
The ASPEN Nutrition Support Core Curriculum 2007
15
The ASPEN Nutrition Support Core Curriculum 2007
16
The ASPEN Nutrition Support Core Curriculum 2007
17
Estimating Sodium Requirement to Correct Serum
Deficit
  • mEq of Na needed (desired Na- measured serum
    Na) x .6 x body wt.(kg)
  • Give no more than ½ the first day
  • Rapid correction (gt12mEq/day) can cause osmotic
    myelinolysis

18
HypernatremiaEtiology
  • Excessive water loss exceeds sodium
    loss or
  • Excesive sodium intake exceeds water intake

19
The ASPEN Nutrition Support Core Curriculum 2007
20
HypernatremiaSymptoms
  • Symptoms if Nagt160 acutely or gt170 chronically
  • Symptoms are neurologic lethargy and
    confusion, twitching, grand mal seizures, stupor
    and coma

21
Treatment of HypernatremiaCalculation of Water
Deficit (70 kg man with a serum Na of 160mEq/L)
  • Water deficit (L) 0.60 x wt in kg x (serum
    Na/140) 1
  • Water deficit (L) 0.60 x 70 x (160/140)
    1 5.88 L

22
Potassium (K)
  • Intracellular cation
  • Usual dose is 60-120 mEq/d for PN patient
  • Added as acetate or chloride salt
  • Total body potassium falls 370 mEq for each 1
    mEq/L fall in measured serum K

23
Potassium (K)
  • Total body K is 50-55 mEq/kg
  • 98 is intracellular
  • Normal daily adult intake is 1 mEq/kg
  • Kidneys can decrease K excretion to no lower than
    10 mEq/L

24
Potassium
  • Hypokalemia can cause weakness and if severe
    psychoses and paralysis
  • Hyperkalemia is more dangerous and can cause EKG
    changes, bradycardia, asystole, and vent. fib.

25
(No Transcript)
26
(No Transcript)
27
Guidelines for Potassium Therapy
  • For normal adults 40 60 mEq/day are given as IV
    replacement therapy
  • For K between 3.0 3.5mEq/L, 100 mEq will raise
    the serum K by 1 mEq/L
  • For K less than 3.0, 200 mEq will raise the
    serum K by 1 mEq/L
  • Do not exceed infusion rates of 20mEq/hour and
    recheck K after 40mEq

28
Hypokalemia and the ECG
  • Low voltage
  • Flattened or inverted T waves
  • Prominent U waves
  • Depressed ST segments
  • Widened QRS complex (Klt2.0)

29
Hyperkalemia and the ECG
  • Flattenend P waves
  • Widened QRS complexes
  • Heart block, atrial asystole
  • Sine wave, V Fib

30
Electrocardiogram Hyperkalemia
vs Acute MI
Acute MI
Hyperkalemia
Hyperkalemia T wave is tall, narrow and
symmetrical Acute MI T wave is tall but
broad-based and asymmetrical
31
Treatment of Hyperkalemia
  • 10 units of Insulin 25 gm of glucose
  • 45 mEq NaHCO3
  • 25 gm cation exchange resin in 20 sorbitol
    solution orally q. 4-6 h or
  • 50 gm cation exchange resin in 1-200 ml 35
    sorbitol by enema q 4 h

32
CHLORIDE
  • Extracellular anion
  • Osmotic pressure and acid base balance
  • Chloride released as HCl as by-product of amino
    acid metabolism
  • Acetate salts used to prevent hyperchloremic
    acidosis
  • Administer as potassium or sodium salt
  • Chloride deficit (mM)
  • 0.5 x body wt (kg) (Cl-NORMAL _ Cl-MEASURED)

33
ACETATE
  • Amino acid metabolism may produce metabolic
    acidosis resulting in ? bicarbonate requirements
  • Bicarbonate changes pH insoluble precipitate
    forms with calcium and magnesium (never add
    bicarbonate to PN solutions )
  • Acetate salts are converted to bicarbonate in the
    liver
  • Functions as systemic alkalinizers
  • Use serum CO2 levels as a guide

34
CALCIUM
  • Extracellular cation
  • Usual dose 9-22 mEq/d
  • Calcium gluconate yields 4.65 mEq/gram
  • Corrected calcium concentration
  • Total Ca2CORRECTED(mg/dl)
  • Total Ca2MEASURED(mg/dl) (4 albumin (g/dl)
    x 0.8)
  • ionized calcium level when in doubt

35
PHOSPHORUS
  • Intracellular anion
  • Usual dose 15-30 mM/d
  • 1 mEq potassium phosphate 0.68 mM phosphate or
    21 mg elemental phosphorus
  • 1 mEq sodium phosphate 0.75 mM phosphate or
    23 mg elemental phosphorus

36
MAGNESIUM
  • Cation (primarily intracellular)
  • Usual dose 8-24 mEq/d
  • Magnesium sulfate yields 8.12 mEq/gram
  • Corrected magnesium concentration
  • Mg CORRECTED Mg 0.0054.0-albumin (g/dl)

37
Composition of Common Electrolyte Solutions
Solution Na K Ca Cl HCO3 precursor mOsm
Ringers 130 4 3 109 28 280
Saline 154 154 308
D/5/W 250
D/5/0.45NaCl 77 77 405
20 KCl 77 20 77 445
38
ELECTROLYTE REQUIREMENTS
39
Daily IV Electrolyte Recommendations
  • Calcium 4.5-22 mEq
  • Phosphate 15-30 mMol
  • Magnesium 8-24 mEq
  • Sodium 60-150 mEq
  • Chloride 100-150 mEq
  • Acetate 10-150 mEq/Liter
  • Potassium 60-120 mEq

40
References
  • Langley G. Fluid, Electrolyte, and Acid-Base
    Disorders. In Gottschlich MM, DeLegge MH, Mattox
    T, Mueller C, Worthington, Eds. The ASPEN
    Nutrition Spport Core Curriculum A Case-Based
    Approach-The Adult Patient. ASPEN, Silver
    Spring, MD, 2007, pp 104-128
  • Estimating Nutritional Requirements. The
    Cleveland Clinic Foundation Nutrition Support
    Handbook, Eds Parekh N, DeChicco R. 2004 pp 34-60.

41
Thank you
About PowerShow.com