Glucose Catabolism Ch. 14 - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Glucose Catabolism Ch. 14

Description:

Glucose Catabolism Ch. 14 Overview Reactions 1-5 Energy invested, 6-10 energy recouped Fermentation Anaerobic end products Ethanol or Lactate Control - Substrate ... – PowerPoint PPT presentation

Number of Views:100
Avg rating:3.0/5.0
Slides: 28
Provided by: Moss4
Category:

less

Transcript and Presenter's Notes

Title: Glucose Catabolism Ch. 14


1
Glucose Catabolism Ch. 14
  • Overview
  • Reactions
  • 1-5 Energy invested, 6-10 energy recouped
  • Fermentation
  • Anaerobic end products Ethanol or Lactate
  • Control - Substrate cycle PFK vs FBPase
  • Other Hexoses - Fructose, galactose, mannose
  • Pentose Phosphate pathway
  • Produces NADPH and nucleotide sugars

2
Overview
  • Glucose 2NAD 2ADP 2Pi -gt 2 Pyruvate
    2NADH 2ATP 2 H2O 4H
  • The C6 sugar is phosphoryated twice (- 2 ATP)
  • Cleaved to give two 3 carbon units
  • Oxidized 2(NAD -gt NADH)
  • 2 phosphoryl groups from each of 2 C3 units
    transferred to ADP (4 ATP)

3
Glycolysis Reactions 1-5
  • 1. Hexokinase
  • Glucose ATP -gt Glucose-6-phosphate ADP Pi
  • 2. Phospho Glucose Isomerase
  • G6P -gt Fructose-6-phosphate
  • 3. Phospho Fructokinase
  • F6P ATP -gt Fructose 1,6-bisphosphate ADP Pi
  • 4. Aldolase
  • FBP -gt Glyceraldehyde-3-phosphate
    Dihydroxyacetone phosphate
  • 5. Triose Phosphate Isomerase
  • DHAP ltgt GAP

4
Hexokinase
  • Glucose ATP -gt Glucose-6-phosphate ADP Pi
  • ATP supplied as Mg2 ATP
  • Active site cleft closes over substrates water
    excluded

5
Phospho Glucose Isomerase (PGI)
CH2OPO32-
CH2OH
O
O
H
H
OH
H
OH
OH
OH
H
H
  • Glucose-6-phosphate -gt Fructose-6-phosphate
  • General Acid protonates O - ring opens
  • Enediolate (C1 - C2) intermediate
  • Enol -gt Keto at C2
  • Ring closure by attack of O on C2 CO

6
Phospho Fructokinase (PFK)
CH2OPO32-
CH2OPO32-
O
OH
H
H
  • F6P ATP -gt Fructose 1,6-bisphosphate ADP Pi
  • Second input of ATP
  • Mechanism similar to hexokinase
  • Rate determining step in glycolysis
  • Allosterically regulated by AMP, ATP and citrate

7
Aldolase
CH2OPO32- C O HO C H H C OH H C OH
CH2OPO32-
CH2OPO32- C O HO C H H C OH H C OH
CH2OPO32-
DHAP
GAP
  • FBP -gt Dihydroxyacetone phosphate
    Glyceraldehyde-3-phosphate
  • DHAP GAP numbered from center
  • C3 bears the phosphoryl group
  • Schiff base or metal ion catalysed reaction

8
Triose Phosphate Isomerase (TIM)
  • DHAP ltgt GAP Keq 0.0473
  • Only GAP utilized in subsequent reactions
  • TIM is an a/b barrel, highly efficient
  • Enediolate intermediate mechanism

9
Glycolysis Reactions 6-10
  • 6. Glyceraldehyde-3-Phosphate Dehydrogenase
  • GAP NAD Pi -gt 1,3-Bisphosphoglycerate
    NADH H
  • 7. Phosphoglycerate kinase
  • 1,3-BPG ADP -gt 3-Phosphoglycerate ATP
  • 8. Phosphoglycerate Mutase
  • 3PG -gt 2-phosphoglycerate
  • 9. Enolase
  • 2PG -gt Phosphenolpyruvate H2O
  • 10. Pyruvate Kinase
  • PEP ADP -gt Pyruvate ATP

10
Glyceraldehyde-3-Phosphate Dehydrogenase(GAPDH)
  • GAP NAD Pi -gt 1,3-Bisphosphoglycerate NADH
    H
  • Inactivated by iodoacetate - Cysteine in active
    site
  • 3H at C1 is transferred to NADH - direct hydride
    transfer
  • Thio ester acyl enzyme intermediate is displaced
    by Pi
  • Acyl phosphate is a high energy bond
  • Overall the reaction is endergonic but removal of
    1,3BPG by PGKdrives the reaction forward

11
Phosphoglycerate kinase (PGK)
O C O- H C OH CH2OPO32-
  • 1,3-BPG ADP -gt 3-Phosphoglycerate ATP
  • First ATP synthesis step
  • ADP and ATP in complex with Mg
  • ?Gis -12 kJ M-1

12
Phosphoglycerate Mutase (PGM)
O C O- H C OPO32- CH2OH
O C O- H C OH CH2OPO32-
  • 3PG -gt 2-phosphoglycerate
  • PGM contains phospho-histidine
  • Determined by 32P transfer from 3PG
  • Enzyme first transfers PO3 to make 2,3BPG
  • 2,3BPG intermediate occasionally dissociates
  • 2,3BPG is an allosteric effector of hemoglobin
  • Side reactions in erythrocytes convert 1,3 2,3
    BPG
  • 2PG ?G hydrolysis -17.6 kJ /mol

13
Enolase
O C O- H C OPO32- CH2OH
O C O- C OPO32- CH2
  • 2PG -gt Phosphenolpyruvate H2O
  • Mg binds first
  • Two-step dehydrogenation
  • 1. Abstraction of proton from C2
  • 2. Elimination of C3 -OH

14
Pyruvate Kinase
O C O- C O CH3
O C O- C OPO32- CH2
  • PEP ADP -gt Pyruvate ATP
  • 2nd ATP generating step
  • Beta phosphoryl of ADP attacks P
  • Enol pyruvate -gt keto form

15
Fermentation
  • Anaerobic processes to recycle NAD
  • For glycolysis to continue NADH (from GAPDH
    reaction) -gt NAD
  • In muscle, lactate dehydrogenase converts
    Pyruvate NADH -gt Lactate NAD
  • In yeast, pyruvate decarboxylase and alcohol
    deydrogenase convert pyruvate NADH to CO2
    Ethanol NAD

16
Lactate Dehydrogenase (LDH)
O C O- C O CH3
O C O- HO C H CH3
  • Pyruvate NADH -gt Lactate NAD
  • Hydride transfer to C2 of pyruvate
  • Lactate (lactic acid) build-up lowers pH
  • Low pH causes muscle fatigue

17
Pyruvate Decarboxylase
O C O- C O CH3
H C O CH3
  • Pyruvate -gt Acetaldehyde CO2
  • Thiamine pyrophosphate (TPP) cofactor
  • Attack on Carbonyl carbon release of CO2
  • Mechanism Fig 14-20

18
Alcohol Dehydrogenase (ADH)
H C O CH3
  • Acetaldehyde NADH -gt Ethanol NAD
  • Similar to LDH

19
Control
  • Flux forward rate - reverse rate Jvf - vr
  • At equilibrium Flux 0 vf vr
  • For rate determining steps vf gtgt vr J vf
  • J can be varied by
  • Substrate concentration
  • Allosteric control
  • Covalent modification - eg. Phosphorylation
  • Substrate cycles
  • independent forward and reverse reactions
  • Change in enzyme levels - Genetic control

20
Control of Glycolysis in Muscle
  • Hexokinase, PFK and Pyruvate Kinase
  • the only reactions in glycolysis with large -?G
  • PFK is the major regulatory point
  • ATP is a substrate and allosteric inhibitor
  • Binds to inhibitor site when PFK is in the T
    state
  • AMP binds to R state

21
Substrate cycling
  • Fructose 1-6 bisphosphatase
  • 1,6-Fructose Bisphosphate -gtFructose6P Pi
  • Provides a pathway for reverse reaction of PFK
  • Opportunity for greater regulatory range
  • Net effect of the two reactions is ATP hydrolysis
    - exothermic reaction generates heat
  • Thermogenesis important for insect flight and
    Obesity

22
Other Hexoses
  • Fructose -gt F1P
  • Fructokinase makes Fructose-1-P
  • Galactose -gt UDP-Glu -gt Glu-1P -gt Glu-6P
  • Galactokinase makes Galactose-1-P
  • Gal-1P Uridylyl tranferase makes UDP-Gal
  • UDP Gal-4- epimerase makes UDP-Glu
  • Mannose
  • Hexokinase, makes Man-6-P
  • phophomannose isomerase Man-6-P -gtF6P

23
Pentose Phosphate pathway
  • NADPH - Reductant distinct from NADH
  • NAD/NADH 1000
  • NADP/NADPH 0.01
  • 3G6P 6NADP 3H2O gt 6NADPH 6H 3CO2
    2F6P GAP
  • 3 stages
  • Oxidations to give NADPH and Ru5P
  • Isomerizations to give R5P and Xu5P
  • Bond breaking and making to give F6P and GAP

24
NADPH production
  • G6P dehydrogenase
  • G6P NADP gt 6-phosphoglucono-d-lactone NADPH
    H
  • Phosphogluconolactonase
  • 6-phosphoglucono-d-lactonegt 6-phosphogluconate
  • Phosphogluconate dehydrogenase
  • 6-phosphogluconate NADP gt Ru5P NADPH CO2

25
Ribulose-5-phosphate
  • Ribulose-5-phosphate isomerase
  • Ru5P gt Ribose 5P
  • R5P is a precursor for nucleotide synthesis
  • Ribulose-5-phosphate epimerase
  • Ru5P gt Xylulose 5P

26
CC bond cleavage
  • Transaldolase
  • R5P Xu5P gt S7P GAP 55 gt 73
  • E4P Xu5P gt F6P GAP 45 gt 63
  • Transketolase
  • S7P GAP gt E4P F6P 73 gt 64

27
Control
  • G6PDH is regulated by substrate
  • NADP
  • G6P dehydrogenase deficiency
  • Most alleles have low protein stability
  • Low NADPH leads to oxidation damage to
    erythrocytes
  • Linked to malaria resistance
Write a Comment
User Comments (0)
About PowerShow.com