The real voyage is not to travel to new landscapes, but to see with new eyes. . . Marcel Proust - PowerPoint PPT Presentation

About This Presentation
Title:

The real voyage is not to travel to new landscapes, but to see with new eyes. . . Marcel Proust

Description:

The real voyage is not to travel to new landscapes, but to see with new eyes' ' ' Marcel Proust – PowerPoint PPT presentation

Number of Views:96
Avg rating:3.0/5.0
Slides: 85
Provided by: TC02
Category:
Tags: bfa | eyes | landscapes | marcel | new | proust | real | see | travel | voyage

less

Transcript and Presenter's Notes

Title: The real voyage is not to travel to new landscapes, but to see with new eyes. . . Marcel Proust


1
The real voyage is not to travel to new
landscapes, but to see with new eyes. . .

Marcel Proust
Francis Halzen University of Wisconsin http//icec
ube.wisc.edu
2
neutrino astronomy
  • kilometer-scale neutrino
  • observatories
  • discovery instruments
  • astronomy

soon
diffuse and point source sensitivities enter
target region defined by cosmic rays and gamma
ray observations
3
neutrino astronomy
4
Requires Kilometer-Scale Neutrino Detectors
5
shielded and optically transparent medium
Cherenkov radiation
array of optical modules
6
optical sensor
7
(No Transcript)
8
(No Transcript)
9
AMANDA
South Pole
Dome
1500 m
Amundsen-Scott South Pole station
2000 m
not to scale
10
IceCube February 2006
11
Amundsen-Scott South Pole Station
IceCube
AMANDA
IceTop
12
IceCube construction
  • 1 million pounds of cargo
  • C-130 planes gt 50 flights

13

14
Northern hemisphere detectors
15
ANTARES Layout
ANTARES
  • 12 lines
  • 25 storeys / line
  • 3 PMT / storey

14.5 m
350 m
Junction box
100 m
40 km to shore
60-75 m
Readout cables
16
detection method
  • nanosecond timing allows
  • likelihood reconstruction of the
  • track with degree accuracy

m
n
  • photon counts reflect energy
  • of the muon that loses energy
  • catastrophically
  • (bremsstrahlung,)

17
detection method
m
n
lattice of light sensors in shielded transparent
medium
18
detection method
m
n
lattice of light sensors in shielded transparent
medium
19
a
at TeV energy ? Neutrino area 10100 cm2 Muon
area 10,000 m2 (geometric area 0.030.1 km2)
the AMANDA Detector
20
n telescope AMANDA event
energy deposited in OM
time recorded on OM
21
AMANDA Event SignaturesMuons
CC muon neutrino Interaction ?
track
nm N ? m X
22
IceCube/IceTop coincident event
sample of events
first IceCube neutrino
23
Skyplot Amanda-II, 2000
697 events below horizon
above horizon mostly fake events
24
1968 OSO-3 (Kraushaar et al. 1972)
sources seen in next mission! SAS-2 100 cm2
  • effective area 4 cm2
  • 600 photons

25
Skyplot Amanda-II, 2000
697 events below horizon
above horizon mostly fake events
26
AMANDA skyplot 2000-2003
3369 events
04 unblinded 05 in 2 weeks
Preliminary
27
likelihood distribution
28
33 selected sources
29
search for point sources in the Northern Sky
  • angular cuts are applied to the reconstructed
    events to
  • reject misreconstructed atmospheric
  • (i.e. down-wardgoing) muons
  • the background is determined from the event
    densities
  • in the off-source declination band
  • at the South Pole a declination band
  • has uniform coverage

ApJ 583, 1040 (2003) Phys. Rev. Lett. 92, 071102
(2004) Astropart. Phys. 22, 339 (2005)
30
Sensitivity to point sources
Sensitivities to point source with an energy
spectrum proportional to dN/dE E-2
Neutrino effective area vs energy and declination
Declination averaged sensitivity, integrated in
energy (Egt10 GeV), dN/dE E-2 ??lim ? 0.610-8
cm-2s-1
31
AMANDA performance
  • ?s per day

3.5 ? 10 per day
  • total statistics

10,000 in 00-05
  • energy

0.1 1,000 TeV
32
search for clusters of events in the Northern sky
Source Nr. of n events (4 years) Expected backgr. (4 years) Flux Upper Limit F90(Engt10 GeV) 10-8cm-2s-1
Markarian 421 6 5.58 0.68
1ES1959650 5 3.71 0.38
SS433 2 4.50 0.21
Cygnus X-3 6 5.04 0.77
Cygnus X-1 4 5.21 0.40
Crab Nebula 10 5.36 1.25
out of 33 sources
33
Statistical test of 33 pre-selected objects
Source Nr. of n events Expected background
Markarian 421 6 5.6
Markarian 501 5 5.0
1ES 1426428 4 4.3
1ES 2344514 3 4.9
1ES 1959650 5 3.7
QSO 0528134 4 5.0
QSO 0235164 6 5.0
QSO 1611343 5 5.2
QSO 1633382 4 5.6
QSO 0219428 4 4.3
QSO 0954556 2 5.2
QSO 0716714 1 3.3
SS433 2 4.5
GRS 1915105 6 4.8
GRO J042232 5 5.1
Cygnus X-1 4 5.2
Cygnus X-3 6 5.0
XTE J1118480 2 5.4
CI Cam 5 5.1
LSI 61 303 3 3.7
SGR 190014 3 4.3
Crab Nebula 10 5.4
Cassiopeia A 4 4.6
Geminga 3 5.2
F90(Engt10 GeV) 10-8cm-2s-1
0.7
0.6
0.5
0.4
1.0
0.4
0.7
0.6
0.4
0.5
0.2
0.3
0.2
0.7
0.6
0.4
0.8
0.2
0.7
0.6
0.4
1.3
0.6
0.3
TeV Blazars
GeV Blazars
MicroQuasars
SNRs
34
observations from the direction of 1ES 1959650
a coincidence with a gamma-ray flare 5 events
observed compared to 3.7 background expected from
atmospheric neutrinos, between 2000 and 2003. 3
events are within 66 days in 2002, partly
overlapping a period of major activity of the
source
Orphan flare (MJD 52429)
35
need a larger detector
  • 3 events in 66 days within the period of a mayor
    1ES 1959650 burst (including orphan flare??s
    but no X-rays)
  • a posteriori search ? undefined probability of
    random coincidence

gamma-rays detected by TeV gamma telescopes
36
neutrinos and extragalactic cosmic rays
37
energy (eV)
n
/ / / / / / / / / / / / / / / / /
CMB
Radio
Visible
flux
cosmic rays
GeV g-rays
38
Galactic and Extragalactic Cosmic Rays
1 event km -2 yr -1
39
flux of extra-galactic cosmic rays
ankle ? one 1019 eV particle per km squared per
year per sr
40
total flux velocity x density
41
gtgtgt energy in extra-galactic cosmic rays
3x10-19 erg/cm3 or 1044 erg/yr per (Mpc)3 for
1010 years
3x1039 erg/s per galaxy 3x1044 erg/s per active
galaxy 2x1052 erg per gamma ray burst ? energy
in cosmic rays equal to the energy
in light !
1 TeV 1.6 erg
42
active galaxy
supermassive
black hole
accretion disk
jet
43
collapse of massive star produces a gamma
ray burst
spinning black hole
highest energy particles
44
Neutrino Beams Heaven Earth
NEUTRINO BEAMS HEAVEN EARTH
Black Hole
Radiation Enveloping Black Hole
p g -gt n p cosmic ray neutrino
-gt p p0 cosmic ray gamma
45
? energy in extra-galactic cosmic rays
3x10-19 erg/cm3 or 1044 erg/yr per (Mpc)3 for
1010 years
3x1039 erg/s per galaxy 3x1044 erg/s per active
galaxy 2x1052 erg per gamma ray burst ? energy
in cosmic rays photons neutrinos
46
Waxman-Bahcall Flux
oscillations
in p decay
47
  • events per km2 year

48
gamma ray bursts
sources are transparent
49
500 events per km2 year
IceCube
50
GZK event cosmic ray cmb photon ? 10
EeV neutrino
51
  • starbursts
  • l 100 pc
  • v 100 km/s
  • t 106 years
  • ? 0.2 g cm-2
  • B 0.1 mGauss
  • supernovae
  • cosmic rays
  • dense gas
  • pions

merging galaxies
52
neutrino radio connection
  • cosmic rays dense gas
  • pions electrons
    radio
  • neutrinos

53
starburst neutrino flux
54
500 events per km2 year
IceCube
55
neutrinos and galactic cosmic rays
56
neutrinos and TeV gamma rays
57
energy (eV)
n
/ / / / / / / / / / / / / / / / /
CMB
Radio
Visible
TeV sources
flux
GeV g-rays
58
p-
p
p0
neutral pions are observed as gamma
rays charged pions are observed as neutrinos
n m
n m-
g
g
e e-
e
g
e-
m
e
g
n
e
n
59
HESS RX J1713 Spectrum
18 h 2003 data
  • 10
  • neutrinos per
  • km2 year
  • indirect
  • evidence for
  • the acceleration
  • of protons at
  • the level
  • required to
  • explain
  • galactic cosmic
  • rays

60
(No Transcript)
61
Supernova Beam Dump
RX J1713-3946
62
TeV photonsfrom the galactic centerprotons
interacting with molecular clouds
2.7
2.3
AMANDA 4 years
63
search for neutrinos from the galactic plane
  • Hypothesis line source along the Galactic
    Equator (dN/dE E-2.7)
  • Apply analytical correction for more realistic
    signal distribution
  • Diffuse flux in the signal region (bin size from
    line hypothesis)
  • Gaussian distribution in the signal region (bin
    re-optimized)

J.L. Kelley et. al, 29th ICRC, Pune (2005)
64
????? flux of galactic cosmic rays
a SNR at d 1 kpc transfers W 1050 erg to
cosmic rays interacting with molecular
clouds with density n 1 cm-3
e.g. RX J1713.7-3946
65
(No Transcript)
66
n flux accompanying TeV gammas
(before oscillations)
67
n flux accompanying TeV gammas
Examples
68
????? flux of galactic cosmic rays
a SNR at d 1 kpc transfers W 1050 erg to
cosmic rays interacting with molecular
clouds with density n 1 cm-3
example 1 ? RX J1713.7-3946 observed by Antares
or Cygnus OB2 observed by AMANDA example 2 ?
same for second generation detector
69
search for clusters of events in the Northern sky
Source Nr. of n events (4 years) Expected backgr. (4 years) Flux Upper Limit F90(Engt10 GeV) 10-8cm-2s-1
Markarian 421 6 5.58 0.68
1ES1959650 5 3.71 0.38
SS433 2 4.50 0.21
Cygnus X-3 6 5.04 0.77
Cygnus X-1 4 5.21 0.40
Crab Nebula 10 5.36 1.25
out of 33 sources
70
????? flux of galactic cosmic rays
a SNR at d 1 kpc transfers W 1050 erg to
cosmic rays interacting with molecular
clouds with density n 1 cm-3
  • the rates are very uncertain !
  • shock physics
  • spectral index a larger than 2 ? reduced neutrino
    rates
  • if a gt 2 could result from absorption of gammas
    in the source
  • ? increased neutrino rates
  • density n larger than 1 cm-3 (OB associations)
  • multiple supernova (OB associations)
  • . watch the Milagro results

71
Sensitivity of Gamma ray telescopes
Sensitivity to neutrinos
8 9 10 11 12
13 14 15 16
log(E/eV)
72
gamma rays from the Southern sky
  • for a gamma source spectrum
  • the number of muons reaching the detector depth
    from the source is

73
(No Transcript)
74
prospects for neutrino astronomy
  • A supernova at 1 kpc interacting with molecular
    clouds (R XJ or Cygnus OB2)
  • ? 110 events per km2 year
  • 1ES signal is real
  • ? 50 events per year
  • Lower end of the flux associated with EG cosmic
    rays
  • ? 100 events per year
  • GZK
  • ? 1 event per km2 year

75
prospects for neutrino astronomy
  • IceCube is larger than 1 km2 and detects 3
    flavors of neutrinos
  • could these fluxes still be an order of magnitude
    overestimate? Yes, and discovery will take 10
    years.
  • remember events is not what matters
  • (e.g. neutrinos from supernova 1987A)

76
(No Transcript)
77
IceCube 9 string vs AMANDA
9-strings (2-3) AMANDA 23 strings
9-strings (depending on
energy)
78
summary
  • doubled largest neutrino telescope
  • 1 km2 year by 2008
  • neutrino astronomy from the North
  • it is going to be an exciting 2 years
  • for gamma rays and cosmic rays and
  • (maybe) neutrinos

79
IceCube Collaboration
Université Libre de Bruxelles, Belgium Vrije
Universiteit Brussel, Belgium Université de
Mons-Hainaut, Belgium Universiteit Gent,
Belgium Universität Mainz, Germany DESY Zeuthen,
Germany Universität Wuppertal, Germany Universität
Dortmund, Germany
Humboldt Universität, Germany MPI,
Heidelberg Uppsala Universitet, Sweden Stockholm
Universitet, Sweden Kalmar Universitet,
Sweden Imperial College, London, UK University of
Oxford, UK Utrecht University, Netherlands
Bartol Research Inst, Univ of Delaware,
USA Pennsylvania State University, USA University
of Wisconsin-Madison, USA University of
Wisconsin-River Falls, USA LBNL, Berkeley, USA UC
Berkeley, USA UC Irvine, USA
Chiba University, Japan
Univ. of Alabama, USA Clark-Atlanta University,
USA Univ. of Maryland, USA University of Kansas,
USA Southern Univ. and AM College, Baton
Rouge, LA, USA Institute for Advanced Study,
Princeton, NJ, USA University of Alaska, Anchorage
University of Canterbury, Christchurch, New
Zealand
80
additional slides
81
IceCube
  • ?s per day

gt 100 per day
  • total statistics

gt 106 over 10yr
  • energy

0.1 10,000 TeV
82
number of neutrinos per km2 year
treshold 50 GeV
1 TeV
(divide by 2 for oscillations)
83
number of neutrinos per km2 year
treshold 100 GeV

1 TeV
  • Waxman-Bahcall high

84
Comparison to AMANDA
Write a Comment
User Comments (0)
About PowerShow.com