Inference on SPMs: Random Field Theory - PowerPoint PPT Presentation

1 / 62
About This Presentation
Title:

Inference on SPMs: Random Field Theory

Description:

GlaxoSmithKline Clinical Imaging Centre. http://www.fmrib.ox.ac.uk/~nichols. Zurich SPM Course ... Estimates and CI's on activation volume. Robust to choice of ... – PowerPoint PPT presentation

Number of Views:138
Avg rating:3.0/5.0
Slides: 63
Provided by: ten80
Category:

less

Transcript and Presenter's Notes

Title: Inference on SPMs: Random Field Theory


1
Inference on SPMsRandom Field Theory
Alternatives
  • Thomas Nichols, Ph.D.
  • Director, Modelling GeneticsGlaxoSmithKline
    Clinical Imaging Centre
  • http//www.fmrib.ox.ac.uk/nichols
  • Zurich SPM Course
  • Feb 12, 2009

2
image data
parameter estimates
designmatrix
kernel
Thresholding Random Field Theory
  • General Linear Model
  • model fitting
  • statistic image

realignment motioncorrection
smoothing
normalisation
StatisticalParametric Map
anatomicalreference
Corrected thresholds p-values
3
Outline
  • Orientation
  • Assessing Statistic images
  • The Multiple Testing Problem
  • Random Field Theory FWE
  • Permutation FWE
  • False Discovery Rate

4
Outline
  • Orientation
  • Assessing Statistic images
  • The Multiple Testing Problem
  • Random Field Theory FWE
  • Permutation FWE
  • False Discovery Rate

5
Assessing Statistic Images
  • Wheres the signal?

High Threshold
Med. Threshold
Low Threshold
Good SpecificityPoor Power(risk of false
negatives)
Poor Specificity(risk of false positives)Good
Power
...but why threshold?!
6
Blue-sky inferenceWhat wed like
  • Dont threshold, model the signal!
  • Signal location?
  • Estimates and CIs on(x,y,z) location
  • Signal magnitude?
  • CIs on change
  • Spatial extent?
  • Estimates and CIs on activation volume
  • Robust to choice of cluster definition
  • ...but this requires an explicit spatial model

space
7
Blue-sky inferenceWhat we need
  • Need an explicit spatial model
  • No routine spatial modeling methods exist
  • High-dimensional mixture modeling problem
  • Activations dont look like Gaussian blobs
  • Need realistic shapes, sparse
  • Some initial work
  • Hartvig et al., Penny et al., Xu et al.
  • Not part of mass-univariate framework

8
Real-life inferenceWhat we get
  • Signal location
  • Local maximum no inference
  • Center-of-mass no inference
  • Sensitive to blob-defining-threshold
  • Signal magnitude
  • Local maximum intensity P-values ( CIs)
  • Spatial extent
  • Cluster volume P-value, no CIs
  • Sensitive to blob-defining-threshold

9
Voxel-level Inference
  • Retain voxels above ?-level threshold u?
  • Gives best spatial specificity
  • The null hyp. at a single voxel can be rejected

u?
space
Significant Voxels
No significant Voxels
10
Cluster-level Inference
  • Two step-process
  • Define clusters by arbitrary threshold uclus
  • Retain clusters larger than ?-level threshold k?

uclus
space
Cluster not significant
Cluster significant
k?
k?
11
Cluster-level Inference
  • Typically better sensitivity
  • Worse spatial specificity
  • The null hyp. of entire cluster is rejected
  • Only means that one or more of voxels in
    cluster active

uclus
space
Cluster not significant
Cluster significant
k?
k?
12
Set-level Inference
  • Count number of blobs c
  • Minimum blob size k
  • Worst spatial specificity
  • Only can reject global null hypothesis

uclus
space
k
k
Here c 1 only 1 cluster larger than k
13
Outline
  • Orientation
  • Assessing Statistic images
  • The Multiple Testing Problem
  • Random Field Theory FWE
  • Permutation FWE
  • False Discovery Rate

14
Hypothesis Testing
  • Null Hypothesis H0
  • Test statistic T
  • t observed realization of T
  • ? level
  • Acceptable false positive rate
  • Level ? P( Tgtu? H0 )
  • Threshold u? controls false positive rate at
    level ?
  • P-value
  • Assessment of t assuming H0
  • P( T gt t H0 )
  • Prob. of obtaining stat. as largeor larger in a
    new experiment
  • P(DataNull) not P(NullData)

15
Multiple Testing Problem
  • Which of 100,000 voxels are sig.?
  • ?0.05 ? 5,000 false positive voxels
  • Which of (random number, say) 100 clusters
    significant?
  • ?0.05 ? 5 false positives clusters

16
MTP SolutionsMeasuring False Positives
  • Familywise Error Rate (FWE)
  • Familywise Error
  • Existence of one or more false positives
  • FWE is probability of familywise error
  • False Discovery Rate (FDR)
  • FDR E(V/R)
  • R voxels declared active, V falsely so
  • Realized false discovery rate V/R

17
MTP SolutionsMeasuring False Positives
  • Familywise Error Rate (FWE)
  • Familywise Error
  • Existence of one or more false positives
  • FWE is probability of familywise error
  • False Discovery Rate (FDR)
  • FDR E(V/R)
  • R voxels declared active, V falsely so
  • Realized false discovery rate V/R

18
FWE MTP Solutions Bonferroni
  • For a statistic image T...
  • Ti ith voxel of statistic image T
  • ...use ? ?0/V
  • ?0 FWE level (e.g. 0.05)
  • V number of voxels
  • u? ?-level statistic threshold, P(Ti ? u?) ?

Conservative under correlation Independent V
tests Some dep. ? tests Total dep. 1 test
19
Outline
  • Orientation
  • Assessing Statistic images
  • The Multiple Testing Problem
  • Random Field Theory FWE
  • Permutation FWE
  • False Discovery Rate

20
SPM approachRandom fields
  • Consider statistic image as lattice
    representation of a continuous random field
  • Use results from continuous random field theory

? lattice represtntation
21
FWE MTP Solutions Controlling FWE w/ Max
  • FWE distribution of maximum
  • FWE P(FWE) P( ?i Ti ? u Ho) P(
    maxi Ti ? u Ho)
  • 100(1-?)ile of max distn controls FWE
  • FWE P( maxi Ti ? u? Ho) ?
  • where
  • u? F-1max (1-?)
  • .

u?
22
FWE MTP SolutionsRandom Field Theory
  • Euler Characteristic ?u
  • Topological Measure
  • blobs - holes
  • At high thresholds,just counts blobs
  • FWE P(Max voxel ? u Ho) P(One or more
    blobs Ho) ? P(?u ? 1 Ho) ? E(?u Ho)

Threshold
Random Field
No holes
Never more than 1 blob
Suprathreshold Sets
23
RFT DetailsExpected Euler Characteristic
  • E(?u) ? ?(?) ?1/2 (u 2 -1) exp(-u 2/2) / (2?)2
  • ? ? Search region ? ? R3
  • ?(?? ? volume
  • ?1/2 ? roughness
  • Assumptions
  • Multivariate Normal
  • Stationary
  • ACF twice differentiable at 0
  • Stationary
  • Results valid w/out stationary
  • More accurate when stat. holds

24
Random Field TheorySmoothness Parameterization
  • E(?u) depends on ?1/2
  • ? roughness matrix
  • Smoothness parameterized as Full Width at Half
    Maximum
  • FWHM of Gaussian kernel needed to smooth a
    whitenoise random field to roughness ?

25
Random Field TheorySmoothness Parameterization
  • RESELS
  • Resolution Elements
  • 1 RESEL FWHMx?? FWHMy?? FWHMz
  • RESEL Count R
  • R ?(?) ? ? (4log2)3/2 ?(?) / ( FWHMx??
    FWHMy?? FWHMz )
  • Volume of search region in units of smoothness
  • Eg 10 voxels, 2.5 FWHM 4 RESELS
  • Beware RESEL misinterpretation
  • RESEL are not number of independent things in
    the image
  • See Nichols Hayasaka, 2003, Stat. Meth. in Med.
    Res.
  • .

26
Random Field TheorySmoothness Estimation
  • Smoothness estdfrom standardizedresiduals
  • Variance ofgradients
  • Yields resels pervoxel (RPV)
  • RPV image
  • Local roughness est.
  • Can transform in to local smoothness est.
  • FWHM Img (RPV Img)-1/D
  • Dimension D, e.g. D2 or 3

27
Random Field Intuition
  • Corrected P-value for voxel value t
  • Pc P(max T gt t) ? E(?t) ? ?(?) ?1/2 t2
    exp(-t2/2)
  • Statistic value t increases
  • Pc decreases (but only for large t)
  • Search volume increases
  • Pc increases (more severe MTP)
  • Smoothness increases (roughness ?1/2 decreases)
  • Pc decreases (less severe MTP)

28
RFT DetailsUnified Formula
  • General form for expected Euler characteristic
  • ?2, F, t fields restricted search regions
    D dimensions
  • E?u(W) Sd Rd (W) rd (u)

Rd (W) d-dimensional Minkowski functional of
W function of dimension, space W and
smoothness R0(W) ?(W) Euler characteristic
of W R1(W) resel diameter R2(W) resel
surface area R3(W) resel volume
rd (W) d-dimensional EC density of Z(x)
function of dimension and threshold, specific
for RF type E.g. Gaussian RF r0(u) 1- ?(u)
r1(u) (4 ln2)1/2 exp(-u2/2) /
(2p) r2(u) (4 ln2) exp(-u2/2) /
(2p)3/2 r3(u) (4 ln2)3/2 (u2 -1) exp(-u2/2)
/ (2p)2 r4(u) (4 ln2)2 (u3 -3u) exp(-u2/2)
/ (2p)5/2
?
29
Random Field TheoryCluster Size Tests
  • Expected Cluster Size
  • E(S) E(N)/E(L)
  • S cluster size
  • N suprathreshold volume?(T gt uclus)
  • L number of clusters
  • E(N) ?(?) P( T gt uclus )
  • E(L) ? E(?u)
  • Assuming no holes

30
RFT Cluster Inference Stationarity
  • Problem w/ VBM
  • Standard RFT result assumes stationarity,
    constant smoothness
  • Assuming stationarity, false positive clusters
    will be found in extra-smooth regions
  • VBM noise very non-stationary
  • Nonstationary cluster inference
  • Must un-warp nonstationarity
  • Reported but not implemented
  • Hayasaka et al, NeuroImage 22676 687, 2004
  • Now available in SPM toolboxes
  • http//fmri.wfubmc.edu/cms/softwareNS
  • Gasers VBM toolbox (w/ recent update!)

VBMImage of FWHM Noise Smoothness
Nonstationarynoise
warped to stationarity
31
Random Field TheoryCluster Size Distribution
  • Gaussian Random Fields (Nosko, 1969)
  • D Dimension of RF
  • t Random Fields (Cao, 1999)
  • B Beta distn
  • Us ?2s
  • c chosen s.t.E(S) E(N) / E(L)

32
Random Field TheoryCluster Size Corrected
P-Values
  • Previous results give uncorrected P-value
  • Corrected P-value
  • Bonferroni
  • Correct for expected number of clusters
  • Corrected Pc E(L) Puncorr
  • Poisson Clumping Heuristic (Adler, 1980)
  • Corrected Pc 1 - exp( -E(L) Puncorr )

33
Random Field Theory Limitations
  • Sufficient smoothness
  • FWHM smoothness 3-4 voxel size (Z)
  • More like 10 for low-df T images
  • Smoothness estimation
  • Estimate is biased when images not sufficiently
    smooth
  • Multivariate normality
  • Virtually impossible to check
  • Several layers of approximations
  • Stationary required for cluster size results

34
Real Data
  • fMRI Study of Working Memory
  • 12 subjects, block design Marshuetz et al (2000)
  • Item Recognition
  • ActiveView five letters, 2s pause, view probe
    letter, respond
  • Baseline View XXXXX, 2s pause, view Y or N,
    respond
  • Second Level RFX
  • Difference image, A-B constructedfor each
    subject
  • One sample t test

35
Real DataRFT Result
  • Threshold
  • S 110,776
  • 2 ? 2 ? 2 voxels5.1 ? 5.8 ? 6.9 mmFWHM
  • u 9.870
  • Result
  • 5 voxels above the threshold
  • 0.0063 minimumFWE-correctedp-value

-log10 p-value
36
Outline
  • Orientation
  • Assessing Statistic images
  • The Multiple Testing Problem
  • Random Field Theory FWE
  • Permutation FWE
  • False Discovery Rate

37
Nonparametric Inference
  • Parametric methods
  • Assume distribution ofstatistic under
    nullhypothesis
  • Needed to find P-values, u?
  • Nonparametric methods
  • Use data to find distribution of statisticunder
    null hypothesis
  • Any statistic!

38
Permutation TestToy Example
  • Data from V1 voxel in visual stim. experiment
  • A Active, flashing checkerboard B Baseline,
    fixation
  • 6 blocks, ABABAB Just consider block
    averages...
  • Null hypothesis Ho
  • No experimental effect, A B labels arbitrary
  • Statistic
  • Mean difference

A B A B A B
103.00 90.48 99.93 87.83 99.76 96.06
39
Permutation TestToy Example
  • Under Ho
  • Consider all equivalent relabelings

AAABBB ABABAB BAAABB BABBAA
AABABB ABABBA BAABAB BBAAAB
AABBAB ABBAAB BAABBA BBAABA
AABBBA ABBABA BABAAB BBABAA
ABAABB ABBBAA BABABA BBBAAA
40
Permutation TestToy Example
  • Under Ho
  • Consider all equivalent relabelings
  • Compute all possible statistic values

AAABBB 4.82 ABABAB 9.45 BAAABB -1.48 BABBAA -6.86
AABABB -3.25 ABABBA 6.97 BAABAB 1.10 BBAAAB 3.15
AABBAB -0.67 ABBAAB 1.38 BAABBA -1.38 BBAABA 0.67
AABBBA -3.15 ABBABA -1.10 BABAAB -6.97 BBABAA 3.25
ABAABB 6.86 ABBBAA 1.48 BABABA -9.45 BBBAAA -4.82
41
Permutation TestToy Example
  • Under Ho
  • Consider all equivalent relabelings
  • Compute all possible statistic values
  • Find 95ile of permutation distribution

AAABBB 4.82 ABABAB 9.45 BAAABB -1.48 BABBAA -6.86
AABABB -3.25 ABABBA 6.97 BAABAB 1.10 BBAAAB 3.15
AABBAB -0.67 ABBAAB 1.38 BAABBA -1.38 BBAABA 0.67
AABBBA -3.15 ABBABA -1.10 BABAAB -6.97 BBABAA 3.25
ABAABB 6.86 ABBBAA 1.48 BABABA -9.45 BBBAAA -4.82
42
Permutation TestToy Example
  • Under Ho
  • Consider all equivalent relabelings
  • Compute all possible statistic values
  • Find 95ile of permutation distribution

AAABBB 4.82 ABABAB 9.45 BAAABB -1.48 BABBAA -6.86
AABABB -3.25 ABABBA 6.97 BAABAB 1.10 BBAAAB 3.15
AABBAB -0.67 ABBAAB 1.38 BAABBA -1.38 BBAABA 0.67
AABBBA -3.15 ABBABA -1.10 BABAAB -6.97 BBABAA 3.25
ABAABB 6.86 ABBBAA 1.48 BABABA -9.45 BBBAAA -4.82
43
Permutation TestToy Example
  • Under Ho
  • Consider all equivalent relabelings
  • Compute all possible statistic values
  • Find 95ile of permutation distribution

0
4
8
-4
-8
44
Controlling FWE Permutation Test
  • Parametric methods
  • Assume distribution ofmax statistic under
    nullhypothesis
  • Nonparametric methods
  • Use data to find distribution of max
    statisticunder null hypothesis
  • Again, any max statistic!

45
Permutation TestOther Statistics
  • Collect max distribution
  • To find threshold that controls FWE
  • Consider smoothed variance t statistic
  • To regularize low-df variance estimate

46
Permutation TestSmoothed Variance t
  • Collect max distribution
  • To find threshold that controls FWE
  • Consider smoothed variance t statistic

t-statistic
variance
47
Permutation TestSmoothed Variance t
  • Collect max distribution
  • To find threshold that controls FWE
  • Consider smoothed variance t statistic

SmoothedVariancet-statistic
mean difference
smoothedvariance
48
Permutation TestStrengths
  • Requires only assumption of exchangeability
  • Under Ho, distribution unperturbed by permutation
  • Allows us to build permutation distribution
  • Subjects are exchangeable
  • Under Ho, each subjects A/B labels can be
    flipped
  • fMRI scans not exchangeable under Ho
  • Due to temporal autocorrelation

49
Permutation TestLimitations
  • Computational Intensity
  • Analysis repeated for each relabeling
  • Not so bad on modern hardware
  • No analysis discussed below took more than 3
    hours
  • Implementation Generality
  • Each experimental design type needs unique code
    to generate permutations
  • Not so bad for population inference with t-tests

50
Permutation TestExample
  • fMRI Study of Working Memory
  • 12 subjects, block design Marshuetz et al (2000)
  • Item Recognition
  • ActiveView five letters, 2s pause, view probe
    letter, respond
  • Baseline View XXXXX, 2s pause, view Y or N,
    respond
  • Second Level RFX
  • Difference image, A-B constructedfor each
    subject
  • One sample, smoothed variance t test

51
Permutation TestExample
  • Permute!
  • 212 4,096 ways to flip 12 A/B labels
  • For each, note maximum of t image
  • .

52
Permutation TestExample
  • Compare with Bonferroni
  • ? 0.05/110,776
  • Compare with parametric RFT
  • 110,776 2?2?2mm voxels
  • 5.1?5.8?6.9mm FWHM smoothness
  • 462.9 RESELs

53
uRF 9.87uBonf 9.805 sig. vox.
uPerm 7.67 58 sig. vox.
t11 Statistic, RF Bonf. Threshold
t11 Statistic, Nonparametric Threshold
54
Does this Generalize?RFT vs Bonf. vs Perm.
55
RFT vs Bonf. vs Perm.
56
Reliability with Small Groups
  • Consider n50 group study
  • Event-related Odd-Ball paradigm, Kiehl, et al.
  • Analyze all 50
  • Analyze with SPM and SnPM, find FWE thresh.
  • Randomly partition into 5 groups 10
  • Analyze each with SPM SnPM, find FWE thresh
  • Compare reliability of small groups with full
  • With and without variance smoothing
  • .

Skip
57
SPM t11 5 groups of 10 vs all 505 FWE
Threshold
Tgt10.93
Tgt11.04
Tgt11.01
10 subj
10 subj
10 subj
2 8 11 15 18 35 41 43 44 50
1 3 20 23 24 27 28 32 34 40
9 13 14 16 19 21 25 29 30 45
Tgt10.69
Tgt10.10
Tgt4.66
10 subj
10 subj
all 50
4 5 10 22 31 33 36 39 42 47
6 7 12 17 26 37 38 46 48 49
58
SnPM t 5 groups of 10 vs. all 505 FWE
Threshold
Tgt7.06
Tgt8.28
Tgt6.3
10 subj
10 subj
10 subj
2 8 11 15 18 35 41 43 44 50
1 3 20 23 24 27 28 32 34 40
9 13 14 16 19 21 25 29 30 45
Tgt4.09
Tgt6.49
Tgt6.19
10 subj
10 subj
all 50
4 5 10 22 31 33 36 39 42 47
6 7 12 17 26 37 38 46 48 49
59
SnPM SmVar t 5 groups of 10 vs. all 505 FWE
Threshold
Tgt4.69
Tgt5.04
Tgt4.57
10 subj
10 subj
10 subj
2 8 11 15 18 35 41 43 44 50
1 3 20 23 24 27 28 32 34 40
9 13 14 16 19 21 25 29 30 45
Tgt4.84
Tgt4.64
10 subj
10 subj
4 5 10 22 31 33 36 39 42 47
6 7 12 17 26 37 38 46 48 49
60
Outline
  • Orientation
  • Assessing Statistic images
  • The Multiple Testing Problem
  • Random Field Theory FWE
  • Permutation FWE
  • False Discovery Rate

61
MTP SolutionsMeasuring False Positives
  • Familywise Error Rate (FWE)
  • Familywise Error
  • Existence of one or more false positives
  • FWE is probability of familywise error
  • False Discovery Rate (FDR)
  • FDR E(V/R)
  • R voxels declared active, V falsely so
  • Realized false discovery rate V/R

62
False Discovery Rate
  • For any threshold, all voxels can be
    cross-classified
  • Realized FDR
  • rFDR V0R/(V1RV0R) V0R/NR
  • If NR 0, rFDR 0
  • But only can observe NR, dont know V1R V0R
  • We control the expected rFDR
  • FDR E(rFDR)

Accept Null Reject Null
Null True V0A V0R m0
Null False V1A V1R m1
NA NR V
63
False Discovery RateIllustration
Noise
Signal
SignalNoise
64
Control of Per Comparison Rate at 10
Percentage of Null Pixels that are False Positives
Control of Familywise Error Rate at 10
FWE
Occurrence of Familywise Error
Control of False Discovery Rate at 10
Percentage of Activated Pixels that are False
Positives
65
Benjamini HochbergProcedure
  • Select desired limit q on FDR
  • Order p-values, p(1) ? p(2) ? ... ? p(V)
  • Let r be largest i such that
  • Reject all hypotheses corresponding to p(1),
    ... , p(r).

JRSS-B (1995)57289-300
1
p(i)
p-value
i/V ? q
0
0
1
i/V
66
Adaptiveness of Benjamini Hochberg FDR
Ordered p-values p(i)
P-value threshold when no signal ?/V
P-value thresholdwhen allsignal ?
Fractional index i/V
67
Benjamini Hochberg Procedure Details
  • Standard Result
  • Positive Regression Dependency on Subsets
  • P(X1?c1, X2?c2, ..., Xk?ck Xixi) is
    non-decreasing in xi
  • Only required of null xis
  • Positive correlation between null voxels
  • Positive correlation between null and signal
    voxels
  • Special cases include
  • Independence
  • Multivariate Normal with all positive
    correlations
  • Arbitrary covariance structure
  • Replace q by q/c(V), c(V) ?i1,...,V 1/i ?
    log(V)0.5772
  • Much more stringent

Benjamini Yekutieli (2001).Ann.
Stat.291165-1188
68
Benjamini HochbergKey Properties
  • FDR is controlled E(rFDR) ? q
    m0/V
  • Conservative, if large fraction of nulls false
  • Adaptive
  • Threshold depends on amount of signal
  • More signal, More small p-values,More p(i) less
    than i/V ? q/c(V)

69
Controlling FDRVarying Signal Extent
p z
1
70
Controlling FDRVarying Signal Extent
p z
2
71
Controlling FDRVarying Signal Extent
p z
3
72
Controlling FDRVarying Signal Extent
p 0.000252 z 3.48
4
73
Controlling FDRVarying Signal Extent
p 0.001628 z 2.94
5
74
Controlling FDRVarying Signal Extent
p 0.007157 z 2.45
6
75
Controlling FDRVarying Signal Extent
p 0.019274 z 2.07
7
76
Controlling FDRBenjamini Hochberg
  • Illustrating BH under dependence
  • Extreme example of positive dependence

1
p(i)
p-value
i/V ? q/c(V)
0
0
1
i/V
77
Real Data FDR Example
  • Threshold
  • Indep/PosDepu 3.83
  • Arb Covu 13.15
  • Result
  • 3,073 voxels aboveIndep/PosDep u
  • lt0.0001 minimumFDR-correctedp-value

FDR Threshold 3.833,073 voxels
78
Conclusions
  • Must account for multiplicity
  • Otherwise have a fishing expedition
  • FWE
  • Very specific, not so sensitive
  • Random Field Theory
  • Great for single-subject fMRI, EEG
  • Nonparametric / SnPM
  • Much better power voxel-wise than RFT for small
    DF
  • FDR
  • Less specific, more sensitive
  • Interpret with care!
  • FP risk is over whole set of surviving voxels

79
References
  • Most of this talk covered in these papers
  • TE Nichols S Hayasaka, Controlling the
    Familywise Error Rate in Functional Neuroimaging
    A Comparative Review. Statistical Methods in
    Medical Research, 12(5) 419-446, 2003.
  • TE Nichols AP Holmes, Nonparametric
    Permutation Tests for Functional Neuroimaging A
    Primer with Examples. Human Brain Mapping,
    151-25, 2001.
  • CR Genovese, N Lazar TE Nichols, Thresholding
    of Statistical Maps in Functional Neuroimaging
    Using the False Discovery Rate. NeuroImage,
    15870-878, 2002.
Write a Comment
User Comments (0)
About PowerShow.com