The real voyage is not to travel to new landscapes, but to see with new eyes. . . Marcel Proust - PowerPoint PPT Presentation

About This Presentation
Title:

The real voyage is not to travel to new landscapes, but to see with new eyes. . . Marcel Proust

Description:

The real voyage is not to travel to new landscapes, but to see with new eyes' ' ' Marcel Proust – PowerPoint PPT presentation

Number of Views:56
Avg rating:3.0/5.0
Slides: 82
Provided by: francis6
Category:

less

Transcript and Presenter's Notes

Title: The real voyage is not to travel to new landscapes, but to see with new eyes. . . Marcel Proust


1
The real voyage is not to travel to new
landscapes, but to see with new eyes. . .
Marcel Proust
Francis Halzen University of Wisconsin http//icec
ube.wisc.edu
2
Energy (eV)
n
/ / / / / / / / / / / / / / / / /
CMB
Radio
Visible
TeV sources!
Flux
cosmic rays
GeV g-rays
3
With 103 TeV energy, photons do not reach us from
the edge of our galaxy because of their small
mean free path in the microwave background.
  • ?g gCMB ?????e e-

4
? astronomy
  • ? astronomy requires kilometer-
  • scale detectors
  • AMANDA proof of concept
  • IceCube a kilometer-scale ?
  • observatory

5
Multi-Messenger Astronomy
  • protons, g-rays, neutrinos, gravitational waves
    as
  • probes of the high-energy Universe

protons directions scrambled by magnetic fields

1.
  • g-rays straight-line propagation but
  • reprocessed in the sources, extragalactic
  • backgrounds absorb Eg gt TeV

2.
3.
  • neutrinos straight-line propagation,
  • unabsorbed, but difficult to
    detect

6
cosmic neutrinos associated with cosmic rays
7
Galactic and Extragalactic Cosmic Rays
8
gtgtgt energy in extra-galactic cosmic rays
3x10-19 erg/cm3 or 1044 erg/yr per (Mpc)3 for
1010 years
3x1039 erg/s per galaxy 3x1044 erg/s per active
galaxy 2x1052 erg per gamma ray burst gtgtgt
energy in cosmic rays equal to the
energy in light !
1 TeV 1.6 erg
9
Neutrino Beams Heaven Earth
NEUTRINO BEAMS HEAVEN EARTH
Black Hole
Radiation Enveloping Black Hole
p g -gt n p cosmic ray neutrino
-gt p p0 cosmic ray gamma
10
Neutrinos Associated With the Source of the
Cosmic Rays?
neutrino flux
AMANDA II sensitivity(!) 50
events per kilometer
square per year
11
why km2 telescope area ?
  • neutrinos associated with the observed sources
    of cosmic rays (and gamma rays)

  • models of cosmic ray accelerators an example
  • search for dark matter, additional dimensions


guaranteed" cosmic neutrino fluxes ? cosmic
ray interactions with CMBR ?
cosmic ray interactions in galactic plane, in
galaxy clusters, in the sun ? decaying
EeV neutrons ? RXJ 1713 !!!

12
Active Galaxy
Radiation Field Ask Astronomers
  • energy in protons
  • energy in electrons
  • photon target observed
  • in lines
  • gtgt few events per year km2

13
Gamma Ray Bursts
Fireball Rapidly expanding collimated ball of
photons, electrons and positrons becoming
optically thin during expansion
Shocks external collisions with interstellar
material (e.g. remnant guaranteed TeV
neutrinos!!!) or internal collisions when slower
material is overtaken by faster in the fireball.
Protons and photons coexist in the fireball
14
GZK Cosmic Rays Neutrinos
cosmogenic neutrinos are guaranteed
0.1 few events per year in IceCube
p gCMB ? p n
15
Models of Cosmic Ray Accelerators Same
Conclusion !
neutrino flux
16
First-Generation Neutrino Telescopes
17
Requires Kilometer-Scale Neutrino Detectors
18
?
Detector
19
10 PMT Hamatsu-70
20
ANTARES Layout
ANTARES
  • 12 lines
  • 25 storeys / line
  • 3 PMT / storey

14.5 m
350 m
Junction box
100 m
40 km to shore
60-75 m
Readout cables
21
Northern hemisphere detectors
22
  • Infrequently, a cosmic neutrino
  • is captured in the ice,
  • i.e. the neutrino interacts
  • with an ice nucleus
  • In the crash a
  • muon (or electron,
  • or tau) is produced

Cerenkov light cone
muon or tau
interaction
detector
  • The muon radiates blue light in its wake

neutrino
  • Optical sensors capture (and map) the light

23
North
AMANDA
South Pole
Dome
road to work
Summer camp
1500 m
Amundsen-Scott South Pole station
2000 m
not to scale
24
Logistics simple!
25
Building AMANDA
Drilling Holes with Hot Water
The Optical Module
26
Hot water drilling
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
North
AMANDA
South Pole
Dome
road to work
Summer camp
1500 m
Amundsen-Scott South Pole station
2000 m
not to scale
31
AMANDA II
t i me
  • up-going muon
  • 61 modules hit

gt 7 neutrinos/day on-line
Size Number of Photons
32
AMANDA Event SignatureMuon
CC muon neutrino interaction ? track
nm N ? m X
33
(No Transcript)
34
(No Transcript)
35
Skyplot Amanda-II, 2000
697 events below horizon
above horizon mostly fake events
36
1968 OSO-3 (Kraushaar et al. 1972)
sources seen in next mission! SAS-2 100 cm2
  • effective area 4 cm2
  • 600 photons

37
AMANDA effective area
38
Detection of ?n(En)
  • dN/dE A n ?n
  • Pearth Pm Am ?n
  • with Pm n Rm sn
    10-6 E Tev

A n Pearth Pm Am
39
  • Infrequently, a cosmic neutrino
  • is captured in the ice,
  • i.e. the neutrino interacts
  • with an ice nucleus
  • In the crash a
  • muon (or electron,
  • or tau) is produced

Cerenkov light cone
muon or tau
interaction
detector
  • The muon radiates blue light in its wake

neutrino
  • Optical sensors capture (and map) the light

40
a
at TeV energy Neutrino area 10100 cm2 Muon
area 10,000 m2 (geometric area 0.030.1 km2)
The AMANDA Detector
41
Skyplot Amanda-II, 2000
697 events below horizon
above horizon mostly fake events
42
AMANDA skyplot 2000-2003 optimized for best
sensitivity to E-3 E-2 sources
3369 events below horizon
Preliminary
43
AMANDA proof of concept
44
Atmospheric Neutrinos
Cosmic Ray
p
??
e
??
?e
??
15 Km
45
Atmospheric n s as Test Beam
100 TeV
100 GeV
Neutrino Energy in GeV
46
Optimized 2002 analysis
zenith distribution
data atmo
gt110 1272 1322
lt110 1232 694
gt90 2504 2017
normalization not final yet, assumed life-time is
208 days
47
Atmospheric Muons Neutrinos
  • Atmospheric muons from cosmic ray showers,
    penetrating to the detector from above
  • Atmospheric neutrinos from the same air
    showers, forming a diffuse background and
    calibration beam
  • Astrophysical neutrinos interesting signal

astrophysical n
cosmic ray
atm. n 10-4 Hz
cosmic ray
102 Hz atm. m
48
(No Transcript)
49
Detector medium ice to meet you
Scattering
Absorption
bubbles
ice
dust
dust
Measurements ?in-situ light sources ?atmospheri
c muons
  • Scattering length 6 52 m
  • Absorption length 9 240 m

50
Diffuse muon neutrino fluxes
Model predictions and AMANDA (E-2) limits
_
Excluded predictions
?µ ?µ
Integral limits (cover 90 of final energy
spectrum)
diffuse (B10)
UHE/3
cascades/3
diffuse (B10)
cascades
unfolded
UHE
Quasi- differential limit
unfolded
51
(No Transcript)
52
(No Transcript)
53
Astronomy
54
Fireball Phenomenology The Gamma-Ray Burst
(GRB) Neutrino Connection
Progenitor (Massive star)
6 Hours
3 Days
?-ray
e- p
Optical
X-ray
(2-10 keV)
Radio
Shock variability is reflected in the complexity
of the GRB time profile.
E ? 1051 1054 ergs
R lt 108 cm
over 500 GRB searched!
R ? 1014 cm, T ? 3 x 103 seconds
R ? 1018 cm, T ? 3 x 1016 seconds
55
Skyplot Amanda-II, 2000
697 events below horizon
above horizon mostly fake events
56
AMANDA 2000
57
Sensitivities Single years Combination
.03
0.25
0.2
Sensitivity / 10 -6GeV E-2 cm-2s-1
0.15
0.1
0.05
0
0.4
0.2
0.6
0.8
1
Sin(d)
58
2000-03 scrambled (top) and unblinded (bottom)
59
Significance map for 2000-2003
60
Preliminary
Cas A
Mk501
Mk421
Cyg
Crab
M87
SS433
61
(No Transcript)
62
90 C.L. upper limits (in units of 10-8cm-2s-1)
for selected sources for an E-2 spectral shape
integrated above E?10 GeV
1997 2000 2000 20002001 20002001
Source Declination Nobs / Nbgr Nobs / Nbgr
SS433 5.0o - 0.7 0 / 2.38 2.3 1 / 1.69
M87 12.4o 17.0 1.0 0 / 0.95 3.8 2 / 1.10
Crab 22.0o 4.2 2.4 2 / 1.76 4.2 3 / 1.10
Mkn 421 38.2o 11.2 3.5 3 / 1.50 1.5 0 / 0.65
Mkn 501 39.8o 9.5 1.8 1 / 1.57 1.4 0 / 0.69
Cyg. X-3 41.0o 4.9 3.5 3 / 1.69 1.5 0 / 0.67
Cas. A 58.8o 9.8 1.2 0 / 1.01 4.7 2 / 1.03
PRELIMINARY
63
Selected Source Analysis Stacking Source
Analysis Galactic Plane
Transient Sources Burst
Search Correlation
Analysis
Multi-Pole Analysis
Lower energy threshold
(optimize to steeper
spectra)
64
Expected sensitivity for AMANDA 97-03
m ? cm-2 s-1
southern sky
northern sky
4 years Super-Kamiokande
170 days AMANDA-B10
10-14
230 days AMANDA-II
8 years MACRO
10-15
declination (degrees)
65
Neutrino Beams Heaven Earth
g n
66
Intrinsic source ? spectrum (corrected for IR
absorption)
Measured ? spectrum
AMANDA-II has reached the sensitivity needed to
search from neutrino fluxes from TeV gamma
sources of similar strength to the instrinsic
gamma flux. This Plot 2000 data only!
AMANDA average flux limit for two
assumed spectral indices ?, compared to the
average gamma flux of Markarian 501 as observed
in 1997 by HEGRA.
67
(No Transcript)
68
(No Transcript)
69
RXJ HESS RX J1713 Spectrum
18 h 2003 data
Resolution 10 arcmin First resolved TeV image
70
RX J1713 Spectrum
  • In favor of p0
  • no cut-off in the
  • HE tail of HESS
  • spectrum
  • signal from the
  • direction of
  • molecular clouds

71
Supernova Beam Dump
RX J1713-3946
72
g-rays from p0 decay discovered
  • En Nn (En) ? Eg Ng (Eg)

1 lt ? lt
8
accelerator beam dump (hidden source)
transparent source p0 p p-
n flux predicted observed g-ray
flux 40 per km2 RX J1713-3946
per year (galactic
center)
(Hess/ Cangaroo)
73
(No Transcript)
74
leaving the 3 s club
IceCube AMANDA-II ANTARES
OF PMTS 4800/10 INCH 600/8 INCH 900/10 INCH
point source sensitivity (nm per year) 10-17 cm-2 s-1 1.6 x 10-15 cm-2 s-1 weakly dependent on declination 0.4--5 x 10-15 cm-2 s-1 depending on declination
diffuse limit (nm per year) 2--7 x 10-9 GeV cm-2 s-1 sr-1 2 x 10-7 GeV cm-2 s-1 sr-1 0.8 x 10-7 GeV cm-2 s-1 sr-1
depends on assumption for background from
atmospheric neutrinos from charm includes
systematic errors
75
Water or Ice ?
76
Kilometer-Scale Neutrino Telescopes
77
Ice Top
0 m
50 m
Snow Layer
300 m
IceCube
1400 m
2400 m
78
Size Perspective
AMANDAII
300 m
1500 m
50 m
2500 m
79
0 m
South Pole
50 m
IceCube
Runway
  • 80 Strings
  • 4800 PMT
  • Instrumented volume 1 km3 (1 Gigaton)
  • IceCube is designed to detect neutrinos of all
    flavors atenergies from 107 eV (SN) to 1020 eV

300 m
1400 m
2400 m
80
evolution of read-out strategy
Test of ICE3 technology
01/02 - 03/04 Equipping all Amanda channels with
FADCs to get full
waveform information (IceCube
compatibility) ? better reconstruction,
particularly cascades and high energy tracks
81
Digital Optical Module
Photomultiplier Tube
82
  • 2 four-channel ATWDs
  • Analog Transient Waveform Digitizers
  • low-power ASICs
  • recording at 300 MHz over first 0.5ms
  • signal complexity at the start of event

DOM Mainboard
  • fast ADC
  • recording at 40 MHz over 5 ms
  • event duration in ice

HV Board Interface
2xATWD
  • Dead time lt 1
  • Dynamic range
  • - 200 p.e./15 ns
  • - 2000 p.e./5 ms
  • energy measurement (TeV PeV)

FPGA
Memories
  • FPGA (Excalibur/Altera)
  • reads out the ATWD
  • handles communications
  • time stamps events
  • system time stamp resolution 7 ns wrt master
    clock

CPLD
  • oscillator (Corning Frequency Ctl)
  • running at 20 MHz
  • maintains df/f lt 2x10-10

83
µ-event in IceCube300 atmospheric neutrinos per
day
AMANDA II
IceCube Larger Telescope Superior Detector
1 km
84
2 x 1019 eV event in AMANDA and IceCube
85
Cherenkov light from muons and cascades
muon
cascade e or t
  • Maximum likelihood method
  • Use expected time profiles of photon flight times

Reconstruction
86
two AMANDA events
87
Cascade Event
  • the length of the e- cascade is small compared
    to the spacing of sensors.
  • roughly spherical density distribution of light.
  • 1 PeV 500 m diameter, additional 100 m per
    decade of energy
  • linear energy resolution

Energy 375 TeV
ne N --gt e- X
88
nt t
PeV t(300m)
t decays
89
enhanced role of tau neutrinos
  • cosmic beam ne nm nt
  • because of oscillations
  • nt not absorbed by the Earth
  • (regeneration)
  • pile-up near 1 PeV
  • where ideal sensitivity

90
  • IceCube
  • Start 2002
  • First strings 04-05
  • Completed 2010

91
Drill modules at McMurdo
92
Modules at 50C
93
(No Transcript)
94
conclusions
  • AMANDA collected gt 5,000 ns
  • 10 (7) more every day on-line
  • neutrino sensitivity has reached n g
  • gt 100,000 per year from IceCube
  • from 1 Crab to lt 0.01 Crab sensitivity

95
  • Bartol Research Institute, Delaware, USA
  • Univ. of Alabama, USA
  • Pennsylvania State University, USA
  • UC Berkeley, USA
  • Clark-Atlanta University, USA
  • Univ. of Maryland, USA
  • IAS, Princeton, USA
  • University of Wisconsin-Madison, USA
  • University of Wisconsin-River Falls, USA
  • LBNL, Berkeley, USA
  • University of Kansas, USA
  • Southern Univ. and AM College, Baton Rouge

USA (12)
Japan
Europe (11)
  • Chiba University, Japan
  • University of Canterbury,
  • Christchurch, NZ

Venezuela
  • Universidad Simon Bolivar,
  • Caracas, Venezuela

New Zealand
  • Universität Wuppertal, Germany
  • Uppsala University, Sweden
  • Stockholm university, Sweden
  • Imperial College, London, UK
  • University of Oxford, UK
  • NIKHEF, Utrecht, Netherlands
  • Universite Libre de Bruxelles, Belgium
  • Vrije Universiteit Brussel, Belgium
  • Université de Mons-Hainaut, Belgium
  • Universität Mainz, Germany
  • DESY-Zeuthen, Germany

96
Achieved and expected sensitivities to steady
point sources
m ? cm-2 s-1
10-14
AMANDA
Super-K, MACRO
2001
10-15
2003
GX 339-4
Antares Nestor ?
2007
10-16
km year aperture by 2007 for A IIIceCube
IceCube
KM3 in Mediterr.
10-17
97
(No Transcript)
98
IceCube effective area for muons
?
?
Northern sky
  • at trigger level
  • after quality cuts and atm m red.
  • after additional energy cuts
  • optimized for point source search
  • after quality cuts and
  • atm m reduction by 106
  • - averaged over E2 spectrum

For E gt 1 TeV, Aeff gtAgeom ? non-contained events
99
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com