Study of the Bc Meson Properties using BcgJ/yen Decay at CDF II - PowerPoint PPT Presentation

1 / 56
About This Presentation
Title:

Study of the Bc Meson Properties using BcgJ/yen Decay at CDF II

Description:

Study of the Bc Meson Properties using BcgJ/yen Decay at CDF II. Masato Aoki ... etag = ~50% efficiency. Residual ggee events. Systematics study ... – PowerPoint PPT presentation

Number of Views:36
Avg rating:3.0/5.0
Slides: 57
Provided by: tsukub
Category:
Tags: bcgj | cdf | decay | etag | meson | properties | study | using | yen

less

Transcript and Presenter's Notes

Title: Study of the Bc Meson Properties using BcgJ/yen Decay at CDF II


1
Study of the Bc Meson Properties using BcgJ/yen
Decay at CDF II
  • Masato Aoki
  • University of Tsukuba, Japan

2
The Bc meson
  • Ground state of bottom-charm quark bound system
  • Both quarks are heavy
  • ? Similar to cc and bb heavy quarkonium families
  • But the two quarks have different flavor
  • ? Only weak decay is possible
  • ? Measurable lifetime
  • Bc provides unique features of heavy quark bound
    states

3
Bc production and decay
  • Differently flavored heavy quarks
  • Much smaller production rate
  • Unique decay (bgc,cgs,annihilation)
  • ? Rich decay modes

Decay BR
bgc BcgJ/y en 1.9
bgc BcgJ/y p 0.13
cgs BcgBs p 16.4
cgs BcgBsr 20.2
ann. Bcgtn 1.6
ann. Bcgcs 4.9
Species Prod. Fraction
B 40
B0 40
Bs 10
b-baryons 10
Bc 0.05
Theoretical calculation 7.4nb Phys. Lett. B605,
311(2005)
hep-ph/0308214(2003)
4
Bc discovery in CDF Run I (9196)
  • Bc signal search using BcgJ/yln (le,m) channel
  • 20 Bc signal events were observed in 110 pb-1 of
    J/ygmm trigger data

PRL 81, 2432 (1998) and PRD 58, 112004 (1998)
harder pT(Bc) was assumed
5
The CDF II detector _at_Tevatron
HAD Calorimeter
Muon Chamber
  • Silicon Detector
  • hlt2.0
  • svertex30mm
  • Central Outer Tracker
  • hlt1.0
  • spT/pT0.15 pT
  • Muon Chamber
  • hlt0.6 (1.0)
  • EM, HAD Calorimeter
  • hlt1.1(EM), lt0.9(HAD)
  • sE/Ev (13.52/ET 32) (EM)
  • v (502/ET 32) (HAD)

EM Calorimeter
Silicon Detector
Central Outer Tracker
B field 1.4 T
6
Bc reconstruction in this analysis
  • Use semileptonic decay BcgJ/yen
  • Large BR ? statistical advantage
  • Improved J/ygmm trigger
  • pT(m)gt1.5 GeV/c (was 2 GeV/c)
  • Factor 5 J/y yield (factor 2 BgJ/y yield)
  • No narrow mass peak due to neutrino
  • Bc signal excess above estimated backgrounds
  • Measure
  • Production cross section and lifetime
  • (Mass to be measured in exclusive channel)

7
J/ygmm trigger data
Additional requirements in this analysis
  • Lint 360 pb-1
  • pT(mm) gt 3 GeV/c
  • Reduce fake
  • Reduce prompt
  • 2.2M J/y
  • Pick M(mm)-M(PDGJ/y) lt 50 MeV/c2

8
Electron reconstruction
  • pT(e) gt 2 GeV/c, hlt1.0
  • Track-based reconstruction algorithm
  • Higher reconstruction efficiency for low pT
    electrons
  • Electron ID using both dE/dx and calorimeter
    information

9
Electron ID using dE/dx
Ze/sZ?1.3
  • Energy deposit in COT

p
p
e
?2GeV
m
K
90 efficiency
e
m
p
p
K
ZeLog((dE/dx)measured/(dE/dx)predicted)
10
Electron ID using calorimeter
  • 10 variables from the calorimeter
  • Form a Joint Likelihood Function
  • L distribution depends on
  • Isolation
  • Transverse momentum
  • Track charge
  • L cut positions as functions of them
  • Constant eID efficiency

Choose 70 efficiency
11
Calorimeter 10 variables
E/p
EHad/EEm
E/p (shower max)
Ewire/Estrip (shower max)
c2wire (shower max)
c2strip (shower max)
DZ (shower max)
DX (shower max)
E (preradiator)
DX (preradiator)
  • Red electrons from ggee-
  • Blue pions from K0sgpp-

12
s(Bc)B(Bc?J/yen) / s(Bu)B(BugJ/yK) Measurement
13
s(Bc)B(Bc?J/yen) / s(Bu)B(BugJ/yK) measurement
strategy
  • Reconstruct mass of J/ye pair
  • Estimate all of the backgrounds
  • Event counting above the backgrounds
  • Normalization mode BugJ/yK
  • BugJ/yK has similar topology to Bc?J/yen
  • Cancel out most of uncertainties

m
m
J/y
J/y
m-
m-
Bu
Bc
n
K
e
14
Backgrounds and control samples
  • fake J/y
  • J/y mass sideband events
  • fake electron
  • J/y track
  • bb (bgeX, bgJ/yX)
  • PYTHIA Monte Carlo, BugJ/yK
  • electron from photon conversion
  • J/y electron tagged as photon conversion
  • prompt J/y
  • No control sample
  • Only know it has zero lifetime

15
J/ye pair reconstruction
m
J/y
m-
n
Bc
e
  • One displaced decay vertex
  • Lxy/sLxygt3
  • Kill prompt background
  • ? Negligible
  • pT(J/ye)gt5 GeV/c
  • Reduce non-B tracks
  • Search window
  • Wide mass region due to missing neutrino
  • 4ltM(J/ye)lt6 GeV/c2

signal region
16
Background Estimates
17
Fake J/y background
  • Fake J/y background can be estimated by J/y mass
    sideband events
  • J/yelectron, J/ytrack, J/yconv.-e have fake
    J/y part each other
  • To avoid double counting, fake J/y events
    (sideband events) will be subtracted in the
    following background estimations

18
Fake electron background
  • Control sample J/y track
  • (after dE/dx cut)
  • Fake rate
  • Fake rates for K/p/P
  • Control sample D0gKp, Lgpp
  • Combine them with proper fraction
  • Nfake N(J/ytrack) x efake
  • as a function of pT(track)

19
Fake rate estimates for K/p/p
  • Control samples
  • D0gKp for K/p,
  • Lgpp for proton
  • Fit mass distribution to obtain of events
    before and after eID cut

20
Particle composition in J/ytrack sample
  • PYTHIA Monte Carlo simulation
  • Dominant fake source pion

CDF Preliminary
Data
Kaon
Pion
d0.09
PYTHIA
Kaon
Pion
Proton
Proton
after dE/dx cut
pion fraction from dE/dx fitting ? max difference
0.09
21
Fake rate
p, p-
CDF Preliminary
average fake rate
positive charge negative charge
K, K-
lt 0.8
p, p
  • The average fake rate is applied to J/ytrack
    after dE/dx cut

22
Systematic uncertainties
  • Isolation dependence
  • 14.5
  • Trigger bias on fake rate
  • 7.2
  • Particle fraction difference between MC and data
  • 1.9
  • Sample statistics
  • J/ytrack 2.0
  • Fake rate 0.9

23
Estimated fake electron background
  • 15.43 ? 2.54 events

24
Photon conversion electrons
g
  • Control sample J/ye tagged as ggee
  • Find collinear partner track
  • These candidates are removed from the J/ye
    candidate list
  • Miss-tracking due to very low pT partner track
  • ? Not 100 finding efficiency
  • ? Residual photon conversion electrons
  • Need to understand the finding efficiency

25
Conversion finding efficiency
  • Assume g comes from p0 (p0ggg)
  • Monte Carlo sample B0gJ/yp0
  • etag 50 efficiency
  • Residual ggee events
  • Systematics study
  • Use pT(tracks) in J/ytrack as pT(p0)
  • Vary dalitz decay (p0geeg) fraction

26
Systematic uncertainties
CDF Monte Carlo
  • pT spectrum
  • 43.7
  • Lifetime
  • 2.0
  • Dalitz decay
  • 1.0
  • Sample statistics
  • Finding efficiency 3.8
  • J/yconv. e 30.1

27
Estimated residual photon conversion
  • 14.54 ? 7.75 events

28
bb background
quark annihilation
gluon fusion
flavor excitation
gluon splitting
  • It is possible to make a common vertex with J/y
    from B decay and e from B decay
  • bb background

29
bb background estimate
  • PYTHIA Monte Carlo simulation
  • Normalization with data N(BugJ/yK)
  • Dominant contribution from gluon splitting bb

Open angle distribution between J/y and electron
with all kinematical requirements
Bc signal MC
CDF Preliminary
Additional requirement Df lt 90deg.
30
Systematic uncertainties
  • Monte Carlo setting (PDF/ISR)
  • 31.4
  • Isolation dependence of eID efficiency
  • 2.9
  • Branching ratio of normalization mode BugJ/yK
  • 0.9
  • Calorimeter fiducial coverage
  • 0.9
  • Statistics
  • MC sample 6.5
  • N(BugJ/yK) in MC 1.9
  • N(BugJ/yK) in data 1.8
  • e(eID by cal) 1.4
  • e(eID by dE/dx) 1.0

31
Estimated bb background
  • 33.63 ? 11.38 events

32
Summary table
Fake e 15.43?0.31?2.52
Conversion 14.54?4.38?6.39
b-bbar 33.63?2.20?11.17
Total bkg 63.59?4.91?13.59
Data 178.50?14.67
J/y sideband events are subtracted
33
M(J/yelectron) data and excess
  • Total background 63.614.4 events
  • Excess 115 events
  • Significance 5.9s

34
Cross check e-track IP w.r.t. J/y vertex
electron
  • Lxy(J/y)gt3s
  • Bc should make a peak around IP0

m
IP
m-
PV
Lxy(J/y)
CDF Preliminary
CDF Preliminary
35
s(Bc)B(Bc?J/yen) / s(Bu)B(BugJ/yK) calculation
  • Having established the signal !!
  • Lets calculate
    s(Bc)B(Bc?J/yen) / s(Bu)B(BugJ/yK)
  • acceptance ratio
  • efficiency ratio

36
Normalization mode BugJ/yK
  • Similar reconstruction criteria as J/ye
  • N(Bu)2872?59 was found in the dame data

37
Kinematical acceptance ratio
  • RK Akin(Bu)/Akin(Bc) 4.421.02

Systematic uncertainties
MC parameters RK DRK
Central value 4.416?0.082 0
M(Bc)6.291 GeV/c2 4.403?0.082 ?0.013
M(Bc)2.251 GeV/c2 4.394?0.082 ?0.022
t(Bc)0.7 ps 4.076?0.074 -0.34
t(Bc)0.4 ps 5.006?0.096 0.59
pT(Bc) spectrum 3.578?0.062 ?0.838
sLxy 4.576?0.086 ?0.16
J/yenX other decays 4.769?0.090 0.353
Trigger 4.299?0.079 -0.117
e/K tracking 2
38
Reconstruction efficiency ratio
  • Most of the efficiencies are expected to be same
    for Bc and B
  • u electron ID with calorimeter and dE/dx

39
Kinematical limits
-1 lt y(Bc) lt 1
4GeV
  • Choose pT(B) gt 4GeV/c, y(B) lt 1 as our cross
    section definition
  • (Run1 pT(B) gt 6GeV/c, y(B) lt 1)

40
Result of s?B ratio measurement
  • s(Bc)B(Bc?J/yen) / s(Bu)B(BugJ/yK)
  • 0.282 ? 0.038(stat.) ? 0.035(yield) ?
    0.065(acc.)
  • (pT(B)gt4GeV/c, h(B)lt1) assuming softer
    pT(Bc)
  • Most of the difference to the Run I measurement
    is from the treatment of input pT(Bc) spectrum
  • But they are still consistent

41
Lifetime Measurement
42
Introduction
  • Three major decay diagrams
  • Lifetime should be t(Bc) ? 1/(0.61.20.1) ? 0.5
    ps if all the three diagrams contribute
    to the decay

other contributions G(Pauli interference)
G(penguin)
43
Theoretical calculations
  • V. V. Kiselev, hep-ph/0308214 (2003) Review
    paper

t(Bc) ps Author
0.357 0.362 C. H. Chang et al. (Commun. Theor. Phys. 35, 57 (2001))
0.48?0.05 V. V. Kiselev et al. (Nucl. Phys. B 585, 353 (2000))
0.63?0.02 A. Yu. Anisimov et al. (Phys. Atom. Nucl. 62, 1739 (1999))
0.59?0.06 A. Yu. Anisimov et al. (Phys. Lett. B 452, 129 (1999))
0.46 0.47 A. El-Hady et al. (Phys. Rev. D 59, 094001 (1999))
0.38?0.03 L. P. Fulcher (Phys. Rev. D 60, 074006 (1999))
0.4 0.7 M. Beneke et al. (Phys. Rev. D 53, 4991 (1996))
0.55?0.1 V. V. Kiselev (Phys. Lett. B 372, 326 (1996))
lt 1.0 I. I. Bigi (Phys. Lett. B 371, 105 (1996))
0.40 C. H. Chang et al. (Phys. Rev. D 49, 3399 (1994))
1.1 1.2 C. Quigg (FERMILAB-CONF-93/265-T (1993))
0.50 M. Lusignoli et al. (Z. Phys. C 51, 549 (1991))
44
Lifetime measurement strategy
  1. Release Lxy(J/ye)gt3s cut
  2. Cut on Lxy error (sLxy lt 70 mm)
  3. Pick J/ye events in signal region(4-6 GeV/c2)
  4. Estimate of background events using same way as
    s?B ratio measurement
  5. Un-binned maximum likelihood fit with J/ye data
  6. Input pseudo-proper decay length and its error
  7. Background PDFs from each control sample
  8. Signal PDF with neutrino effect correction
  9. Fit J/ye data to extract Bc lifetime

45
Pseudo-proper decay length
  • ct proper decay length
  • X pseudo-proper decay length
  • K correction factor

K-distributions for 4 M(J/ye) bins
46
Background estimates (w/o decay length cut)
  • Background events are estimated using same way as
    s?B ratio measurement
  • Prompt background and Bc signal are from the
    lifetime fitting directly

M(J/ye) GeV/c2 4-6
fake J/y 164.09.1
fake electron 110.219.0
photon conversion 67.434.8
bb 63.018.4
prompt ??
Bc ??
data 783
systematic uncertainties are included
47
PDF and likelihood function
  • Signal PDF
  • Background PDF
  • Event PDF
  • Log likelihood

signal term
backgrounds term
Prompt bkg shape is assumed to be a resolution
function (Gaussian)
48
Background distributions
Fake J/y
Photon conversion
Fake electron
49
Fitter check before J/ye data fitting
BugJ/yK data
CDF Preliminary
ct504.1 9.3(stat.) mm ?good agreement with CDF
Run II result 498.8 8(stat.) 4(syst.) mm
Toy MC
Fitter returns reasonable lifetime result and
error
50
J/ye data fit result
51
Systematic uncertainties
Total systematic uncertainty is order of 7
(10mm)
52
Comparison with theoretical calculations
  • CDF Run2 (360pb-1,J/ye)
  • ct 142 22/-20 10 mm
  • ? t 0.474 0.073/-0.066
    0.033 ps

Operator Product Expansion 0.55 ? 0.15 ps
Bethe-Salpeter Model 0.460.47 ps
Light-Front Constituent Quark Model 0.59 ? 0.06 ps
Light-Front ISGW Model 0.63 ? 0.02 ps
Hard-Soft Factorization 0.55 ? 0.1 ps
QCD Sum Rules 0.48 ? 0.05 ps
53
Experimental results of the Bc meson lifetime
measurement
54
J/ye mass distribution, again
  • Normalization 46 GeV/c2 using lifetime fit
    result
  • Prompt shape Assume to be J/ytrack with Lxy lt
    3s
  • Good agreement !!

55
Summary of the Bc analysis
  • Have established the Bc signal in J/yen final
    state with 5.9s significance
  • Measurements with good precision (worlds best)
  • s(Bc)B(Bc?J/yen) / s(Bu)B(BugJ/yK)
  • 0.282 ? 0.038(stat.) ? 0.035(yield) ?
    0.065(acc.)
  • Lifetime
  • 0.4740.073/-0.066(stat.) ?0.033(syst.) ps
  • The results are consistent with CDF Run I
    measurements

56
FIN Thank you
  • This lifetime result with minor update was
    accepted for publication in Physical Review
    Letters PRL 97, 012002 (2006)
Write a Comment
User Comments (0)
About PowerShow.com