Invisible light - PowerPoint PPT Presentation

1 / 86
About This Presentation
Title:

Invisible light

Description:

Invisible light – PowerPoint PPT presentation

Number of Views:72
Avg rating:3.0/5.0
Slides: 87
Provided by: usersAn
Category:
Tags: htaen | invisible | light

less

Transcript and Presenter's Notes

Title: Invisible light


1
Invisible light
2
(No Transcript)
3
(No Transcript)
4
(No Transcript)
5
(No Transcript)
6
(No Transcript)
7
(No Transcript)
8
(No Transcript)
9
Pit Viper and Mosquitoes
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
(No Transcript)
15
(No Transcript)
16
(No Transcript)
17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
Synthetic Aperture Radar (SAR)
28
(No Transcript)
29
X-Ray
30
(No Transcript)
31
X-Ray backscatter
32
X-Ray backscatter
33
MRI
34
MRI of brain
35
MRI
36
(No Transcript)
37
PET Scan
38
(No Transcript)
39
NonHodgkins Lymphoma PET scan
40
Lymphoma PET scan
41
CAT Scan
42
CAT scan
43
Thermography
44
Thermography
45
Global Hawk Drone
46
Stinger Missile
47
Pit Viper and Mosquitoes
48
UV/Visible Spectroscopy
  • CHE 4100
  • Anderson University

49
Electromagnetic Spectrum
frequency (n)
high
low
energy
X-Ray Ultraviolet
infrared micro radio

wave wave
visible
ultraviolet
wavelength (l)
short
long
50
(No Transcript)
51
If a compound absorbs one color, we see its
complementary color.
52
Principles of UV-Visible Spectroscopy
Chromophores - groups of atoms responsible for
these transitions
Forbidden transitions - less probable - low
intensity
Allowed transitions - more probable - high
intensity
53
UV Visible Spectrum
lmax
UV/visible bands are broad due to overlap of
rotational and vibrational states of a molecule.
A
Wavelength in nm (l)
54
Transmittance and Absorbance
55
Beers Law
56
Beers Law
slope molar absorptivity
Molar concentration
57
Solvents and Cells for UV Spectroscopy
solvent
Sample cell
200 nm
400 nm
800 nm
uv
visible
Glass or plastic
quartz
58
Common Chromophores Alkenes
?
E
165 nm
? 15,000
?
59
Common ChromophoresCarbonyl Compounds
?
E
n
?
60
Possible transitions
61
Conjugation
Alternate single and double bonds overlap of
p-orbitals
Conjugation lowers energy of ? ? ? transition
62
1,3-butadiene
antibonding
bonding
63
UV Absorption of Conjugated Alkenes
  • Increasing conjugation gives
  • longer wavelength absorption
  • more intense absorption

64
b-Carotene
11 double bonds
lmax 460 nm (e 139,000)
65
(No Transcript)
66
If a compound absorbs one color, we see its
complementary color.
67
Heme Metabolism
Bilirubin is normally metabolized in the liver to
a water soluble derivative that is eliminated in
the bile. Some infants or individuals with a
genetic disorder lack the enzyme that produces
this derivative and develop jaundice. Buildup of
bilirubin leads to brain damage.
68
Bilirubin
Nonpolar not excreted
69
Photoenolization
polar
nonpolar
BR-albumin
BR
BR
light
bile
PBR-albumin
PBR
PBR
skin
blood
liver
70
UV-Vis
  • Which would absorb a longer wavelength of light,
    1,4-pentadiene or 1,3-pentadiene?

Conjugated
Isolated
178 nm
223 nm
71
Fine structure is vibrational Fine structure.
72
Robert Burns Woodward 1965 Nobel Prize in
Chemistry
First synthesized quinine, cholesterol and
cortisone (1951), chlorophyll (1960),
tetracycline (1962), Vitamin B12 (1971- Included
over 100 reactions), deduced structures For
penicillin (1945), strychnine (1947),
etc. Widely known as the father of modern
organic synthesis.
73
Woodward-Fieser Rules for Dienes
  • Base Value
  • heteroannular 214 nm
  • homoannular 253 nm
  • Additions for
  • alkyl group or ring residue 5 nm
  • double bond extending conjugation 30 nm
  • exocyclic double bond 5 nm

74
Exocyclic/Endocyclic
endocylic
exocyclic
75
Calculate the ?max for the following compounds
253 (base) 15 (3 ring residues) 5 (exocyclic
CC) ------------ 273 nm calc. Observed 275 nm
214 (base) 15 (3 ring residues) 5 (1
exocyclic CC) ----------- 234 nm calc. Observed
235 nm.
76
Fieser-Kuhn rules
Used for conjugated systems with more than 4
double bonds.
l max 114 5M n(48.0-1.7n) 16.5Rendo
10Rexo
n number of conjugated double bonds M number
of alkyl or alkyl like substituents on the
conjugated system Rendo number of rings with
endocyclic double bonds in the conjugated
system Rexo number of rings with exocyclic
double bonds
77
Lycopene
114 5(8) 1148.0 1.7(11) 0 0 476
nm Observed 474 nm (hexane)
78
Carbonyl Compounds
  • Saturated ketones and aldehydes
  • Far-UV region
  • - p -gt p 150 nm, strong
  • n -gt s 190 nm, strong
  • Near UV, 270-300 nm (n -gt p), weak

79
Woodward Rules for Enones
  • Base values
  • acyclic or 6-membered ring 215 nm
  • 5-membered ring 202 nm
  • Additions for
  • double bond extending conjugation 30 nm
  • alkyl group or ring residue a 10 nm
  • b 12 nm
  • ? g 18 nm
  • exocyclic double bond 5 nm

80
1-Acetylcyclohexene
  • 215 (base)
  • 10 (a substituent)
  • 12 (b substitutent)
  • -----
  • 237 nm
  • Obs. 232 nm.

81
Cholesta-1,4-dien-3-one
  • 215 (base)
  • 24 (2 b substituents)
  • 5 (1 exocyclic CC)
  • -----
  • 244 nm
  • Obs. 245 nm.

82
Enol of 1,2-cyclopentanedione
  • 202 (base)
  • 12 (b substituent)
  • 35 (a-OH)
  • -----
  • 249 nm
  • Obs. 247 nm.

83
Aromatic Compounds
Substituents shift 255 nm band to higher
wavelength
84
Polyaromatics
85
Substituent Effects on Aromatic Absorption
255 nm band is sensitive to electron density of
aromatic ring
Electron density Red highest Green moderate
86
pH Effects on Aromatic Absorption
Phenoxide ion Electrostatic potential map
Anilinium ion Electrostatic potential map
Write a Comment
User Comments (0)
About PowerShow.com