Astroparticle Physics with High Energy Neutrinos: from AMANDA to IceCube - PowerPoint PPT Presentation

About This Presentation
Title:

Astroparticle Physics with High Energy Neutrinos: from AMANDA to IceCube

Description:

Astroparticle Physics with High Energy Neutrinos: from AMANDA to IceCube – PowerPoint PPT presentation

Number of Views:71
Avg rating:3.0/5.0
Slides: 42
Provided by: francis6
Category:

less

Transcript and Presenter's Notes

Title: Astroparticle Physics with High Energy Neutrinos: from AMANDA to IceCube


1
  • Astroparticle Physics with High Energy
    Neutrinos from AMANDA to IceCube
  • astro-ph/0602132
  • Lectures on High Energy
  • Neutrino Astronomy
  • astro-ph/0506248
  • Latest Results
  • astro-ph/0509330

2
Flux Estimates of Cosmic Neutrinos
3
Particle physics cold dark matter search
Astrophysics gamma ray bursts starbursts
Generic fluxes associated with cosmic rays
Examples of Science
4
Natures Particle Accelerators
  • Electromagnetic Processes
  • Synchrotron Emission
  • Eg (Ee/mec2)2 B
  • Inverse Compton Scattering
  • Ef (Ee/mec2)2 Ei
  • Bremsstrahlung
  • Eg 0.5 Ee
  • Hadronic Cascades
  • p g ? p po ? e n g
  • p p ? p po ? e n g

5
Typical Multiwavelength Spectrum from
Non-Thermal High Energy g-ray Source
Energy Emitted
synchrotron
Inverse Compton
Photon Energy
6
Spinning Neutron Star Fills Nebula with Energetic
Electrons ? Synchrotron Radiation and Inverse
Compton Scattering
7
Active Galactic Nuclei
  • Massive Black Hole Accelerates Jet of Particles
    to Relativistic Velocities
  • ? Synchrotron Emission and
    Inverse Compton

8
no evidence for protons but
cosmic rays exist
9
Challenge Acceleration
shock velocity n
R
(V e F b v/c)
B
n
  • boosted energy
  • from cosmic accelerator

10
Energy in extra-galactic cosmic rays 3x1037
erg/s or 1044 erg/yr per (Mpc)3
3x1039 erg/s per galaxy 3x1044 erg/s per active
galaxy 2x1052 erg per gamma ray burst
1 TeV 1.6 erg
11
brightest known sources match IF equal energy in
protons and electrons (photons)
  • AGN (steady)
  • G few requires Lgt1047 erg/s
  • Few, brightest AGN
  • GRBs (transient)
  • G 300 requires Lgt1051 erg/s
  • Average Lg1052 erg/s
  • equal energy in neutrinos

12
Point Sources
Signal
Background (atmos. ns)
For 10 -- 1000 TeV
13
Cosmological sources
Most Powerful Cosmological sources AGN
(Steady) GRBs (100s transient)
  1. 1 km2 detector
  2. same UHE CR suspects

14
Model
EW 95
  • Flys Eye fit for Galactic heavy (lt1019eV)
  • JGE-3.50
  • X-Galactic protons
  • Generation spectrum (shock
    acceleration)
  • Generation rate
  • Redshift evolution SFR

15
Diffuse Background
Signal
Background (atmos. ns)
Waxman-Bahcall bound
1km2 detector --gt 50 events/yr
16
n Flux Bound
  • Observed JCR(gt1019eV)
  • For Sources with tgp lt 1
  • Strongest know z evolution (QSO, SFR) collect
    ns beyond GZK

EW Bahcall 99, Bahcall EW 01
17
tgp for known sources
eg
p
e
n
e-
eg
ep
18
neutrinos from GRB an example
19
gamma ray bursts
20
Fireball Phenomenology The Gamma-Ray Burst
(GRB) Neutrino Connection
Progenitor (Massive star)
6 Hours
3 Days
?-ray
e- p
Optical
X-ray
(2-10 keV)
Radio
E ? 1051 1054 ergs
R lt 108 cm
R ? 1014 cm, T ? 3 x 103 seconds
R ? 1018 cm, T ? 3 x 1016 seconds
21
collapse of massive star produces a gamma ray
burst spinning black hole
highest energy particles
22
neutrinos from GRB
  • fireball expanding collimated shocked jet of
    photons,
  • electrons and positrons becomes optically thin
  • produces neutrinos in internal collisions when
    slower
  • material is overtaken by faster in the fireball

protons and photons coexist in the fireball
23
NUMEROLOGY
  • Lg 1052 erg/s
  • R0 100 km (dt 10 msec)
  • Eg 1 MeV
  • 300
  • dEg/dt dECR/dt 4x1044 erg Mpc-3yr-1
  • tH 1010 years
  • Pdet 10-6 En0.8 (in TeV)
  • spg 10-28 cm2 for pg?np
  • lt xp ? p gt 0.2

24
GRB1
fireball
fireball frame at t0
observer frame
DR
R
R'
v
c
g 102 - 103 E g E' t g-1 t'
d
1 MeV 10 msec
DR c Dt R0 with R0 R' (t 0)
25
grb 2 kinematics
R
q
v
q
c
26
superluminal motion boosted accelerators
Eobs G E' Dtobs G-1 Dt'
5c
4c
?
1c
3c
' accelerator frame exp G lt 10
3 ly
light from blob is only one year behind that from
agn!
27
GRB1
fireball
fireball frame at t0
observer frame
DR
R
R'
v
c
g 102 - 103 E g E' t g-1 t'
d
1 MeV 10 msec
DR c Dt R0 with R0 R' (t 0)
28
Photon Density in the Fireball
GRB2
LgDt/g ______ 4pR'2DR'
U'g ___ E'g
ng
E'g ___ g
R' g2cDt
DR' gcDt
note for g 1 (no fireball) the optical depth
of photons is ? topt
R0ngsTh 1015
R0 __ lTh
29
GRB3
pion (neutrino) production when protons and
photons coexist
neutrinos
pg D np
gamma rays
np0

Ep gt 1.4 x 104 TeV
m2D - m2p _________ 4E'g
E'p gt
_
_
En 1/4 lt xp p?gt Ep 1/20 Ep 700 TeV
30
fraction of GRB energy converted into pion
(neutrino) production
e
g (Lg)
GRB
synchro IC
n
p
pions
(LCR)
GRB4
31
GRB 5
Neutrino flux from GRB fireballs
U? ___ E?
1 ___ E?
fn (1/2 f? tH
)
c __ 4p
c __ 4p
dE __ dt
_
charged pions only
LCR
Lg
Nevents Psurvived Pdetected fn 20 km -2 yr
-1
_
32
GRB 6
NUMEROLOGY

Lg 1052 erg/s R0 100 km Eg 1 MeV ?t 1-10
msec g 300
ltxp -gt pgt 1/5 spg 10-28cm2 tH 1010
years dE/dt 4x1044 erg Mpc-3yr-1 Pdet 10-6
En0.8 (in TeV)
33
distribution of the sources critical !
  • Adding Fluctuations to the average
  • dN/dE Source spectrum
  • f(z) redshift distribution function, with the
    integral normalized to One
  • E(source) (1z) E(here)

34
fluctuations dominate !
50
45
(a)
40
35
30
25
Number of GRBs
20
15
10
5
0
-5
-4
-2
-1
0
1
-3
10
10
10
10
10
10
10
-2
Events km
35
Correlations to GRB
background cuts can be loosened considerably ?
high signal efficiency
88 BATSE bursts in 1997
effective area 0.05 km2
36
starbursts
37
  • starbursts
  • l 100 pc
  • v 100 km/s
  • t 106 years
  • ? 0.2 g cm-2
  • B 0.1 mGauss
  • supernovae
  • cosmic rays
  • dense gas
  • pions

merging galaxies
38
neutrino radio connection
  • cosmic rays dense gas
  • pions electrons
    radio
  • neutrinos

39
starburst neutrino flux
40
500 events per km2 year
IceCube
41
n flux accompanying TeV gammas
Flux from M82 estimated to be 10-13 TeV photons
42
neutrinos TeV g cm-2 s-1
10 per year in AMANDA 10-9 Markarian burst
AMANDA limit few x 10-10 above 1 TeV 10-10 Crab standard candle
10 per year in IceCube 10-11 center galaxy
43
search for dark matter particles
44
relic density
  • decoupling occurs when
  • Gann lt H

45
the MSSM
  • The LightestSupersymmetric Particle (LSP)
  • Usually the neutralino. If R-parity is
    conserved, it is stable.
  • The Neutralino c
  • Gaugino fraction
  • 1. Select MSSM parameters
  • 2. Calculate masses, etc
  • 3. Check accelerator constraints
  • 4. Calculate relic density
  • 5. 0.05 lt Wch2 lt 0.5 ?
  • 6. Calculate fluxes, rates,...
  • Calculation done with

http//www.physto.se/edsjo/darksusy/
46
The mc-Zg parameter space
Gauginos
Mixed
Higgsinos
47
WIMP search strategies
  • Direct detection
  • Indirect detection neutrinos from the
    Earth/Sun antiprotons from the galactic
    halo positrons from the galactic halo gamma
    rays from the galactic halo gamma rays from
    external galaxies/halos synchrotron radiation
    from the galactic center / galaxy clusters ...

48
direct detection - general principles
c
c
c
c
c
December
June
49
EdelweissJune 2002
50
WIMP Capture and Annihilation
n
nm
DETECTOR
c c ? W W ? n n
51
neutralino capture and annihilation
sun
Freese, 86 Krauss, Srednicki Wilczek, 86
Gaisser, Steigman Tilav, 86
Silk, Olive and Srednicki, 85Gaisser, Steigman
Tilav, 86
52
indirect detection for cyclists
e.g. 104 m2 n-telescope searches for 500 GeV WIMP
gt LHC limit
300 km/s
1. ? - flux
2. solar cross section
53
Nsun capture rate annihilation rate
_ c c
WW
250 GeV
500 GeV
mnm

3. Capture rate by the sun
4. Number of muon-neutrinos
0.1 is the leptonic branching ratio
54
5.5 x 1023 cm-3
104 m2
_
events 10 per year
55
WIMP search
PRELIMINARY
Limits on muon flux from Earth
Limits on muon flux from Sun
Disfavored by direct search (CDMS II)
56
IceCube vs
Direct Detection (Zeppelin4/Genius) Black
out Green yes Blue no
57
Inner Core Detector
Inner Core (same region as AMANDA)
7 IceCube 18 AMANDA strings 225 DOMs 540 OMs
58
(No Transcript)
59
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com