Accurate Quantitative Spectroscopy of OB Stars Revising Hot Star Metallicities - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

Accurate Quantitative Spectroscopy of OB Stars Revising Hot Star Metallicities

Description:

Revising Hot Star Metallicities. Mar a Fernanda Nieva(1,2) Norbert Przybilla(1) ... present-day abundances (young stars) spatial distribution (abundance gradients) ... – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 25
Provided by: epoc
Category:

less

Transcript and Presenter's Notes

Title: Accurate Quantitative Spectroscopy of OB Stars Revising Hot Star Metallicities


1
Accurate Quantitative Spectroscopy of OB
StarsRevising Hot Star Metallicities
  • María Fernanda Nieva(1,2)
  • Norbert Przybilla(1)
  • (1) Dr. Remeis Sternwarte Bamberg
    (Germany)
  • (2) Observatório Nacional
    (Brazil)

2
Outline
  • Introduction/Aims
  • Models/Observations
  • Our Analysis
  • Results
  • Conclusions

3
Introduction
  • galactochemical evolution
  • present-day abundances (young stars)
  • spatial distribution (abundance gradients)
  • stellar evolution
  • basic stellar parameters abundances
  • empirical evaluation of evolutionary models (e.g.
    Maeder Meynet 2000)

Precise chemical composition of early-type stars
Sun
4
Introduction
Problems
Metal abundances of MS stars in the solar vicinity
  • sub-solar chemical evolution of the
    Galaxy ?
  • why M/H young stars lt M/H solar-type stars ?
  • highly inhomogeneous stellar evolution ?
  • why DM/H young stars 1-2 orders of magnitude
    ?
  • N enhancement from rotational mixing
  • C O slightly depleted from rotational
    mixing

Sun
but not so large!
5
Introduction
e(C)log(C/H)12
e(C) problems in the analysis (last 4 decades!)
  • LTE/non-LTE
  • Large non-LTE effects (not well-understood)
  • - e(C II) strong lines ? e(C II) weak lines
  • - Strong lines C II ll4267, 6578/83 ?
  • imp. for fast-rotators and low S/N
    (extragalactic)
  • e(C II) ? e(C III) no ionization equilibrium

Another underestimated problem Teff photom. ?
Teff spectrosc. up to 5000 K in
OB dwarfs and giants (15)
6
Introduction
Representative sources from the literature
carbon
oxygen
1 dex !
1.6 dex !
7
Aims of this work
  • Solution classical non-LTE problem e(C) OB-stars
  • Reliable C II/III/IV model atom calibrated with
    Galactic stars (OB III-V)
  • Special emphasis
  • - selection input atomic data
  • - accurate atmospheric parameter determination
  • Checking multiple ionization equilibria
  • He I/II, C II/III/IV, O I/II

8
Quantitative Spectroscopy
Relies on many model assumptions !
Theory synthetic lines
Line fits
Atomic Physics
Model Atoms
Stellar Atmospheres
Chemical Abundances
Observations
  • Absolute values (Physics)
  • Not relative to other stars or Sun

Spectra
  • Non-trivial process (at all !)
  • Accuracy depends on all steps of analysis
  • Difficult controlling systematic effects

9
Theory
  • Hybrid non-LTE approach (Nieva Przybilla 2007,
    subm. to AA)
  • LTE model atmosphere ATLAS9
  • non-LTE line formation DETAILSURFACE
  • Model atoms
  • H (Przybilla Butler 2004)
  • He I/II (Przybilla 2005)
  • C II/III/IV (Nieva Przybilla, 2007, in
    prep.)
  • O I/II (Przybilla et al. 2002 / Becker
    Butler 1988 updated)
  • N II (Przybilla Butler 2001)
  • Mg II (Przybilla et al. 2001)

radiative transfer statistical equilibrium
10
Observations
  • 6 early-B III-V apparently slow-rotators
  • 21500 lt Teff lt 32000 K
  • 3.1 lt log g lt 4.3 dex
  • randomly distributed in solar vicinity (lt 1 Kpc)
  • from associations and field
  • Spectra high S/N FEROS data
  • Spectra near-IR (FOCES, SUBARU) for 2 stars

11
New analysis
  • Based on C II-IV (up to 40 lines)
  • highly sensitive to
  • extensive iteration on all variables
  • Teff, log g, x, z, v sin i, e(C) atomic
    data
  • avoidance of systematic errors (where possible)

- atmospheric parameters - input atomic data
  • 6 early-B III-V stars
  • 21500 lt Teff lt 32000 K
  • 3.1 lt log g lt 4.3 dex
  • Accurate stellar parameters
  • Empirically calibrated C model
  • Accurate C abundances

Results
12
Near-IR
Simultaneous fits to all mesurable H/He lines
Visual
H Balmer
H Paschen Data FOCES,
Calar Alto, Spain
He I
He I K-Band Data Subaru, Hawaii
He II
Nieva Przybilla, 2007 (subm. to AA)
Data FEROS, ESO
HR 3055
13
Excellent fits to C lines
Data FEROS, ESO S/N up to 800
C II
All lines have very similar abundances
Further analysis of O, N Mg
C III
C IV
t Sco
Nieva Przybilla, 2007 (in prep.)
14
Non-LTE vs. LTE for individual lines
15
Accurate Pristine Abundances in the Solar Vicinity
Our results vs. literature
oxygen
carbon
We avoid systematic errors in atmospheric
parameters atomic data
Our statistics has to be improved
16
Accurate Pristine Abundances in the Solar Vicinity
Our results vs. literature
nitrogen
magnesium
For the whole picture (youngevolved stars) ?
talk by N. Przybilla on Thursday
17
Conclusions
  • Solutions to classical problems
  • Non-LTE C abundances of C II ll4267/6578-82 ?
    37 lines
  • (applications to fast-rotators and
    extragalactic objects)
  • Highly uniform C, O Mg abundances (limit. of
    sample)
  • No sub-solar abundances for the analysed metals
  • ? Revision of Hot Star
    Metallicities
  • Temperature scale highly important in the
    analysis

Consequences of careful quantitative spectroscopy
Thanks!
U. Heber, K. Cunha, K. Butler, M. Altmann, H.
Edelmann, J. Puls DAAD
18
(No Transcript)
19
Sensitivity of Carbon Abundance to Atmospheric
Parameters
Typical systematic discrepancies from the
literature
Our solution for HR 3055 Teff 31200200 K
log g 3.950.05 dex x 8 1 km s-1
C IV up to 1.1 dex! C III up to 0.35 dex! C II
up to -0.35 dex!
4267
6583
Teff -2000 K
6578
log g 0.2 dex
Discrepancies increase with ? atomic data !!
x 5 km s-1
20
Teff scales ours vs. literature
21
Different model atoms for C II
e(5145)-e(4267)
e(5145)-e(6578)
Teff (x103 K)
22
Sensitivity of C II to photoionization
cross-sections
23
(No Transcript)
24
Step 2 Carbon
Our Analysis
Step 1 H, He I/II
I
Initial Teff , log g
I
Initial Teff , log g, x, z, e(He), v sin i
No grids ! Detailed analysis for each star !
NLTE C populations
Stellar atmosphere
Synthetic H/He/C profiles
NLTE H/He populations
Comparison with observed spectra
Synthetic H/He profiles
Variables
Comparison with observed spectra
Parameter verification
Teff , log g, x, z, e(C), v sin i
200 levels gt 1300 radiat. transitions gt 5300
collis. transitions
Empirical calibration of C model atom
Parameter verification
M
Modified Teff , log g, x, z, e(He), v sin i
New set of atomic data
Same procedure for
M
Modified Teff , log g
  • 6 early-B III-V stars
  • 21500 lt Teff lt 32000 K
  • 3.1 lt log g lt 4.3 dex

MI ?
no
MI ? se(C) min?
yes
no
Final Teff , log g, x, z, e(He), v sin i
  • Accurate Stellar Parameters
  • Calibrated C model for 1 Star
  • Accurate Carbon Abundance

yes
To Step 2
Verify Step 1
Write a Comment
User Comments (0)
About PowerShow.com