Astroparticle yield in radio galaxies jets and hot spots - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

Astroparticle yield in radio galaxies jets and hot spots

Description:

Ecr max fixed by escape losses transport. At the terminal shock. Over the HS. synchrotron ... zoom. Ecrmax ~ 5 x 1016 eV. 3C273A: electrons. 3C273A: protons ... – PowerPoint PPT presentation

Number of Views:29
Avg rating:3.0/5.0
Slides: 22
Provided by: marco57
Category:

less

Transcript and Presenter's Notes

Title: Astroparticle yield in radio galaxies jets and hot spots


1
Astroparticle yield in radio galaxies jets and
hot spots
  • A.Marcowith (C.E.S.R. Toulouse France)
  • F.Casse (F.O.M. Rijnhuizen, the Netherlands
    A.P.C. Paris, France)

2
Outline
  • Multi-? high spatial resolution observations.
  • Methodology MHD-SDE code.
  • Jets hot spots
  • - Particle transport in complex flows
  • - Microscopic turbulence
  • - Astroparticle yield
  • Future works.

3
Multi-? observations
  • Multi-wavelength spectra
  • High resolution maps (VLBI, HST, Chandra
    XMM-Newton).
  • ? Spectral and spatial analysis
  • Supernova remnants (van der Swaluw Achterberg
    2004)
  • Massive star formation sites (poster on
    Super-bubbles)
  • Active Galactic Nuclei jets and hot spots (this
    talk)

4
Radio-X-ray jets
IC/CMB ?
synchrotron
Sambruna et al. 2002
1 5.4 kpc
5
FRII hot spots
Hot spot A
Wilson et al. 2000
core
jets
Chandra
Cygnus A (VLA 5 GHz )
SSC
FR Fanaroff Riley radio-galaxies FRII are the
most powerful RG.
6
Astrophysical interests
  • Radiative processes in high energy sources
  • - Origin of the X-ray radiation in jets and
    hot spots
  • Relativistic particle production, acceleration
    and propagation
  • - Cosmic-ray physics.
  • Constraints on transport processes
  • - Turbulence (fluid microscopic), magnetic
    field configuration, link to macroscopic
    structures.

Need for multi-scale computational methods
linking large MHD scale to kinetic transport ...
7
Multi-scale simulation
  • (3Dtime) MHD kinetic Eq. radiative
    processes.
  • MHD Versatile Advection Code (www.physics.uu.nl/
    toth)
  • - 3D conservative schemes non-relativistic
    flows
  • Kinetic equations Diffusive approximation
  • - Stochastic differential equations ?
    Diffusion-convection equation
  • Radiative processes synchrotron/IC losses (e-),
    hadronic interaction (p-p, p-? gamma-ray
    neutrino)

8
Diffusive shock acceleration
  • Constraints on ?tsde and ?

?Xadv
upstream
downstream
?Xdiff
?Xshock
ideal sharp discontinuity
Numerical smoothing over few grid cells
Necessary condition to compute the shock process
correctly ?Xadv ( Vflow ?tsde) lt ?Xshock lt
?Xdiff ( v2 ? ?tsde) (Kruells Achterberg 1994
N Dim. extension Casse Marcowith 2003) ?
?tsde and ?min
9
SDEs
  • 3D axisymetric MHD ? Vflow, B, tMHD.
  • Microscopic turbulence model ? diffusion
    coefficients ?.
  • Sum number of particles N(p,t) in a given (r,z) ?
    distribution function at tMHD.

10
Extragalactic jets hot spots
  • FRI jets (Casse Marcowith AA 2003)
  • Complex shock structures.
  • Multiple-shock acceleration.
  • Hot spots (Casse Marcowith PRD 2004 sub.)
  • Constraints on turbulence regime.
  • Magnetic field configuration.
  • Astroparticle yield (gamma-rays, high energy
    neutrinos, cosmic-rays).

11
Complex shock structure
Kelvin-Helmoltz instability ? internal shocks in
jet T1 (weak curved shock lt r gt 2.76)
lt T2 (strong planar shock lt r gt 4)
Stationary sol. F(p) ? p-3r/(r-1)
12
Hot spot simulation
Poloidal MF
AMR-VAC (Keppens 2004)
13
Astroparticle yield in HS
Cygnus A Electrons
Cygnus A protons
At the terminal shock
Over the HS
synchrotron
zoom
Proton Escaping the HS
At the terminal shock
Kolmogorov turbulence poloidal MF Ecr max
fixed by escape losses ? transport
Ecrmax 5 x 1016 eV
14
3C273A electrons
3C273A protons
At the terminal shock
Over the whole HS
At the terminal shock
synchrotron
zoom
Escaping protons
Kolmogorov turbulence toroidal MF
Ecrmax 7 x 1019 eV
15
E-2 spectrum
Secondaries from 3C273A
  • Neutrinos flux on Earth 2.3 x 10-14 GeV / cm2 s
    sr ( 5 orders of magnitude under ANTARES
    sensitivity)
  • p-p gamma-ray flux on Earth 4.7 x 10-14 GeV /
    cm2 s sr ( 3 orders of magnitude under GLAST
    sensitivity)

16
Conclusions
  • Methodology
  • Multi-? high resolution observations ?
    multi-scale simulations to handle
  • gt Macroscopic structures.
  • gt Microscopic physics.
  • Mesoscopic simulation schemes MHD-EDS
  • Easy to implement, able to handle complex
    flows configurations with shocks.
  • - Statistics, test-particle approximation.
  • Other methods do exist (T. Downes et al. 2002,
    T. Jones et al. 1999, A. Micono et al. 1999)

17
  • Astrophysics Jets Hot spots
  • Investigate complex shock structure in jets and
    hot spots
  • Constraints on acceleration mechanisms or
    turbulence
  • Multi-? spectra astroparticle
  • 3C273A (transverse shock acceleration high
    synchrotron cut-off 1014 Hz)

18
Future works
  • Full time-dependent simulation for FRI jets
  • X-ray dominated synchrotron astroparticle
    production (FRI some hot spots)
  • Multi-wavelength maps
  • Other objects (SNr,SNr-cloud interaction,
    colliding stellar winds...)
  • Extension to relativistic flows (FRII
    radio-galaxies)
  • Make time dependent SDEs available for the
    community and insert an SDE routine in VAC and
    AMR-VAC.

19
Multiple shock effects
Test particle approximation theory p F(p) ?
p-(tacc/tesc) Multiple shock with no escape ?
flat p F(p) distribution
Synchrotron losses
  • Spectral energy distribution without synchrotron
    losses for
  • Const. Diff. Coeff.
  • Kolmogorov with ? turbulence level

20
MHD turbulence in HS
  • Test // and ? shocks (poloidal or toroidal MF
    dominated HS)
  • Test different transport theory
  • Isotropic Kolmogorov, Kraichnan, Bohm.
  • Anisotropic Goldreich-Sridhar
  • Main conclusions
  • Highest CR energies for Kolmogorov with toroidal
    MF.
  • HS with high synchrotron cut-off (optical 1014
    Hz) are prone to be efficient astroparticle
    (secondaries from p-p and p-? interaction Ep
    (E?/1eV) gt 6.6 1016 eV) sources.
  • Best candidate in Meisenheimer et al. 1989
    1997 list
  • 3C273A (low radio power, high synchrotron
    cut-off, CR accelerator Ecrmax 7 x 1019 eV).
  • Cygnus A (powerful radio source, low synchrotron
    cut-off 1012 Hz, not expected to be a strong
    astroparticle source.

21
  • Astrophysics Jets Hot spots
  • Hard spectra produced by multiple shocks
    acceleration (alternative radiative model)
  • Oblique-perpendicular shocks with Kolmogorov
    type turbulence favored to produce high energy
    CRs
  • Weaker radio but optical Hot spots are expected
    to be astroparticle sources
  • - Good candidate 3C273A (transverse shock
    acceleration high synchrotron cut-off 1014
    Hz)
Write a Comment
User Comments (0)
About PowerShow.com