Cosmological Aspects of Neutrino Physics (III) - PowerPoint PPT Presentation

Loading...

PPT – Cosmological Aspects of Neutrino Physics (III) PowerPoint presentation | free to download - id: e1265-NTljZ



Loading


The Adobe Flash plugin is needed to view this content

Get the plugin now

View by Category
About This Presentation
Title:

Cosmological Aspects of Neutrino Physics (III)

Description:

Neutrino Physics and Cosmology. 3rd lecture. Bounds on m? from CMB, ... on m? from cosmology ... (measurement) of neutrino masses from Cosmology. DATA ... – PowerPoint PPT presentation

Number of Views:32
Avg rating:3.0/5.0
Slides: 35
Provided by: sergio122
Learn more at: http://www2.ph.ed.ac.uk
Category:

less

Write a Comment
User Comments (0)
Transcript and Presenter's Notes

Title: Cosmological Aspects of Neutrino Physics (III)


1
Cosmological Aspects of Neutrino Physics (III)
?
  • Sergio Pastor (IFIC)
  • 61st SUSSP
  • St Andrews, August 2006

2
Neutrino Physics and Cosmology
3rd lecture
Bounds on m? from CMB, LSS and other data
Bounds on the radiation content (Neff)
Future sensitivities on m? from cosmology
3
Effect of massive neutrinos on the CMB and Matter
Power Spectra
Max Tegmark www.hep.upenn.edu/max/
4
Neutrinos as Hot Dark Matter
Massive Neutrinos can still be subdominant DM
limits on m? from Structure Formation (combined
with other cosmological data)
5
How to get a bound (measurement) of neutrino
masses from Cosmology
Fiducial cosmological model (Obh2 , Omh2 , h ,
ns , t, Sm? )
PARAMETER ESTIMATES
6
Cosmological Data
  • CMB Temperature WMAP plus data from other
    experiments at large multipoles (CBI, ACBAR,
    VSA)
  • CMB Polarization WMAP,
  • Large Scale Structure
  • Galaxy Clustering (2dF,SDSS)
  • Bias (Galaxy, ) Amplitude of the Matter P(k)
    (SDSS,s8)
  • Lyman-a forest independent measurement of
    power on small scales
  • Baryon acoustic oscillations (SDSS)
  • Bounds on parameters from other data SNIa (Om),
    HST (h),

7
Cosmological Parameters example
SDSS Coll, PRD 69 (2004) 103501
8
Cosmological bounds on neutrino mass(es)
A unique cosmological bound on m? DOES NOT exist !
9
Cosmological bounds on neutrino mass(es)
A unique cosmological bound on m? DOES NOT exist !
  • Different analyses have found upper bounds on
    neutrino masses, since they depend on
  • The combination of cosmological data used
  • The assumed cosmological model number of
    parameters (problem of parameter degeneracies)
  • The properties of relic neutrinos

10
Cosmological bounds on neutrino masses using WMAP1
11
Cosmological bounds on neutrino masses using WMAP3
12
Neutrino masses in 3-neutrino schemes
CMB galaxy clustering
Fig from Strumia Vissani, NPB726(2005)294
13
Tritium ? decay, 0?2? and Cosmology
Fogli et al., hep-ph/0608060
14
0?2? and Cosmology
Fogli et al., hep-ph/0608060
15
Parameter degeneracy Neutrino mass and w
In cosmological models with more parameters the
neutrino mass bounds can be relaxed. Ex
quintessence-like dark energy with ?DEw pDE
16
Relativistic particles in the Universe
At Tltme, the radiation content of the Universe
is Effective number of relativistic neutrino
species Traditional parametrization of the energy
density stored in relativistic particles
17
Extra relativistic particles
  • Extra radiation can be
  • scalars, pseudoscalars, sterile neutrinos
    (totally or partially
  • thermalized, bulk), neutrinos in very low-energy
    reheating
  • scenarios, relativistic decay products of heavy
    particles
  • Particular case relic neutrino asymmetries

Constraints on Neff from BBN and from CMBLSS
18
Effect of Neff at later epochs
  • Neff modifies the radiation content
  • Changes the epoch of matter-radiation equivalence

19
CMBLSS allowed ranges for Neff
  • Set of parameters ( Obh2 , Ocdmh2 , h , ns , A
    , b , Neff )
  • DATA WMAP other CMB LSS HST ( SN-Ia)
  • Flat Models
  • Non-flat Models
  • Recent result

Hannestad Raffelt, astro-ph/0607101
95 CL
20
Future bounds on Neff
  • Next CMB data from WMAP and PLANCK (other CMB
    experiments on large ls) temperature and
    polarization spectra
  • Forecast analysis in O?0 models

Lopez et al, PRL 82 (1999) 3952
PLANCK
WMAP
21
Future bounds on Neff
Updated analysis Larger errors
?Neff 3 (WMAP) ?Neff 0.2 (Planck)
Bowen et al 2002
Bashinsky Seljak 2003
22
The bound on Sm? depends on the number of
neutrinos
  • Example in the 31 scenario, there are 4
    neutrinos (including thermalized sterile)
  • Calculate the bounds with N? gt 3

Abazajian 2002, di Bari 2002
23
Sm? and Neff degeneracy
24
Analysis with Sm? and Neff free
WMAP ACBAR SDSS 2dF
Previous priors (HST SN-Ia)
2s upper bound on Sm? (eV)
Hannestad Raffelt, JCAP 0404 (2004) 008 Crotty,
Lesgourgues SP, PRD 69 (2004) 123007
25
Analysis with Sm? and Neff free
WMAP ACBAR SDSS 2dF
Hannestad Raffelt, astro-ph/0607101
Crotty, Lesgourgues SP, PRD 69 (2004) 123007
26
Non-standard relic neutrinos
The cosmological bounds on neutrino masses are
modified if relic neutrinos have non-standard
properties (or for non-standard models)
  • Two examples where the cosmological bounds do not
    apply
  • Massive neutrinos strongly coupled to a light
    scalar field they could annihilate when becoming
    NR
  • Neutrinos coupled to the dark energy the DE
    density is a function of the neutrino mass
    (mass-varying neutrinos)

27
Non-thermal relic neutrinos
The spectrum could be distorted after neutrino
decoupling Example decay of a light scalar
after BBN
  • CMB LSS data still compatible with large
    deviations from a thermal neutrino spectrum
    (degeneracy NT distortion Neff)
  • Better expectations for future CMB LSS data,
    but model degeneracy NT- Neff remains

28
Future sensitivities to Sm?
When future cosmological data will be available
  • CMB (TP) galaxy redshift surveys
  • CMB (TP) and CMB lensing
  • Weak lensing surveys
  • Weak lensing surveys CMB lensing

29
PLANCKSDSS
  • Fisher matrix analysis expected sensitivities
    assuming a fiducial cosmological model, for
    future experiments with known specifications

Fiducial cosmological model (Obh2 , Omh2 , h ,
ns , t, Sm? ) (0.0245 , 0.148 , 0.70 , 0.98 ,
0.12, Sm? )
30
Future sensitivities to Sm? new ideas
weak gravitational and
CMB lensing lensing
No bias uncertainty Small scales much closer to
linear regime Tomography 3D reconstruction
Makes CMB sensitive to smaller neutrino masses
31
Future sensitivities to Sm? new ideas
weak gravitational and
CMB lensing lensing
sensitivity of future weak lensing
survey (4000º)2 to m? s(m?) 0.1 eV Abazajian
Dodelson PRL 91 (2003) 041301
sensitivity of CMB (primary lensing) to
m? s(m?) 0.15 eV (Planck) s(m?) 0.044 eV
(CMBpol) Kaplinghat, Knox Song PRL 91 (2003)
241301
32
CMB lensing recent analysis
s(M?) in eV for future CMB experiments alone
Lesgourgues et al, PRD 73 (2006) 045021
33
Summary of future sensitivities
Lesgourgues SP, Phys. Rep. 429 (2006) 307
Future cosmic shear surveys
34
End of 3rd lecture
About PowerShow.com