Workshop on Strongly Correlated Systems, Seoul National University, October Photoemission spectrosco - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

Workshop on Strongly Correlated Systems, Seoul National University, October Photoemission spectrosco

Description:

Spectroscopies in Novel Superconductors, July 11-16, 2004, ... d-wave order parameter in high-TC cuprates. Pseudogap behavior to Fermi arc in La2-xSrxCuO4 ... – PowerPoint PPT presentation

Number of Views:58
Avg rating:3.0/5.0
Slides: 27
Provided by: wyvernPh
Category:

less

Transcript and Presenter's Notes

Title: Workshop on Strongly Correlated Systems, Seoul National University, October Photoemission spectrosco


1
Spectroscopies in Novel Superconductors, July
11-16, 2004, Sitges, Spain
Pseudogap and Fermi arc in lightly-doped cuprates
A. Fujimori University of Tokyo
T. Yoshida (U. Tokyo) X.-J. Zhou, Z.-X. Shen
(Stanford U.) Z. Hussain (ALS) T. Kakeshita, S.
Uchida (U. Tokyo) H. Eisaki (AIST) Y. Ando, A.N.
Lavrov, K. Segawa (CRIEPI) Discussion Y.
Yanase, H. Fukuyama
2
Outline
  • Pseudogap and Fermi arc
  • Electronic specific heats
  • DC transport
  • Conclusion

3
Phase diagram, Fermi surface and d-wave order
parameter in high-TC cuprates
4
Pseudogap behavior to Fermi arc in La2-xSrxCuO4
EDC
Intensity (abs. units)
Energy relative to EF (eV)
5
Spectral weight of nodal quasi-particle
spectral weight of nodal QP z ? x

T. Yoshida et al., PRL 03
6
Doping-independent nodal Fermi velocity
X.J. Zhou et al.,Nature 03
7
Band dispersion in lightly-doped region
Antinode
Node
MDC
MDC
T. Yoshida et al., PRL 03
8
Fermi surface, remnant Fermi surface
Tight binding model E(k) -2t(cos kxacos
kya) - 4tcos kxa cos kya -
2t(cos2kxacos2kya) E 0
TB fit
MDC peak
9
Luttinger sum rule
Experimental and fitted band structure and Fermi
surface
x
TB fit
MDC peak
10
Pseudogap in the anti-nodal region
Tight binding fit
MDC peak
11
Identification of QP peak along the (remnant)
Fermi surface
x0.03
X.J. Zhou et al.,PRL 04
12
Fermi arc in lightly-doped YBa2Cu3Oy (d0.04)
YBa2Cu3Oy (d0.04)
La2-xSrxCuO4 (x0.03)
H. Yagi et al.
13
Outline
  • Pseudogap and Fermi arc
  • Electronic specific heats
  • DC transport
  • Conclusion

14
Pseudogap behaviors in La2-xSrxCuO4
Y.J. Uemura et al., PRL 89
H. Takagi et al., PRB 89
T. Nakano et al., PRB 94
N. Momono et al., JPSJ 03
Hole doping x
15
Band structure and Fermi surface
Experimental and fitted band structure and Fermi
surface
x
TB fit
MDC peak
16
Band structure and QP density at the Fermi level
DOS of the tight-binding band
DOS ( QP density) at EF
DOS
N. Momono et al., Physica C 94
17
Outline
  • Pseudogap and Fermi arc
  • Electronic specific heats
  • DC transport
  • Conclusion

18
Unusual metallic transport in lightly-doped
cuprates
Y. Ando et al. PRL 01
19
Band dispersion in lightly-doped region
Antinode
Node
MDC
MDC
T. Yoshida et al., PRL 03
20
Doping and momentum dependence of Dk
Mean free path l 1/Dk
Dk
21
Boltzmann transport
ky
E
kF
(p,p)
q
kx
Explains only a factor of 2 increase in
resistivity with underdoping cf) transport
expt gt102
22
Boltzmann transport on the Fermi arc
Boltzmann transport on the Fermi arc
Entire Fermi surface
23
Origin of the pseudogap and Fermi arc ?
d-wave-like pseudogap of RVB origin ? -
antinodal gap in A(k,w) H. Fukuyama - vF
constant, z x M. Randeria, R. B.
Laughlin - compatible with 4x4 charge ordring
P.W. Anderson
24
Origin of the pseudogap and Fermi arc ?
(Pseudo)gap due to AF fluctuations ? J. R.
Schieffer , P. Prelovsek, K. Yamada Charge
ordering ? D. H. Lee
25
Summary
  • Pseudogap and Fermi arc are characterized by
    ARPES in detail, particularly for LSCO.
  • Fermi surface and remnant Fermi surface satisfy
    the Luttinger sum rule.
  • Sharp peak exists only on the arc.
  • Electronic specific heat
  • Suggests that most of QPs disappear from EF in
    the anti-nodal region.
  • DC transport
  • Conventional Boltzmann transport fails to explain
    the resistivity increase for x ? 0 and the
    violation of the Ioffe-Regel limit.
  • Disappearance of QPs in the anti-nodal region
    reduces the dc conductivity.

26
Doping and momentum dependence of vF
Write a Comment
User Comments (0)
About PowerShow.com