Biosensors - PowerPoint PPT Presentation

Loading...

PPT – Biosensors PowerPoint presentation | free to download - id: 3f0419-ZmRmZ



Loading


The Adobe Flash plugin is needed to view this content

Get the plugin now

View by Category
About This Presentation
Title:

Biosensors

Description:

... (DNA) Carbon nanotube BioFET Whole Cell Basic functionality Benefits/Challenges Summary References Introduction Biosensor: ... – PowerPoint PPT presentation

Number of Views:210
Avg rating:3.0/5.0
Slides: 39
Provided by: FuYi
Learn more at: http://www.eng.umd.edu
Category:

less

Write a Comment
User Comments (0)
Transcript and Presenter's Notes

Title: Biosensors


1
Biosensors
  • Christopher Byrd
  • ENPM808B
  • University of Maryland, College Park
  • December 4, 2007

2
Outline
  • Introduction
  • 4 Specific Types of Biosensors
  • Electrochemical (DNA)
  • Carbon nanotube
  • BioFET
  • Whole Cell
  • Basic functionality
  • Benefits/Challenges
  • Summary
  • References

3
Introduction
  • Biosensor
  • Incorporation of a biomolecule in order to detect
    something

Species to be detected (analyte)
Filter
Recognition Layer
Transducer
Electronics
Signal
Recognition Layer
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
4
Introduction
  • Biosensors 3B
  • 90 ? Glucose testing
  • 8 - 10 increase in industry per year

Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
5
Electrochemical DNA Sensors
  • Harnesses specificity of DNA
  • Simple assembly
  • Customizable
  • Vast uses for small cost

Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
6
DNA Structure
  • DNA structures---double helix
  • 4 complementary bases
  • Adenine (A), Guanine (G),
  • Thymine (T), and Cytosine (C)

Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
7
DNA Specificity
  • Hydrogen bonding between base pairs
  • Stacking interaction between bases along axis of
    double-helix
  • Animation

Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
8
Principles of DNA biosensors
  • Nucleic acid hybridization

(Target Sequence)
(Hybridization)
(Stable dsDNA)
ssDNA (Probe)
Source http//cswww.essex.ac.uk
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
9
E-DNA Sensor Structure
Stem-loop
s
Gold electrode
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
10
E-DNA Sensor Structure
Target
Stem-loop
s
Gold electrode
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
11
E-DNA Sensor Structure
(Open, extended)
(Stem-loop)
Source Ricci et al., Langmuir, 2007, 23,
6827-6834
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
12
Carbon Nanotube Biosensor
Image www.cnano-rhone-alpes.org
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
13
Carbon Nanotube Biosensor
  • One atom thick
  • One nanometer diameter
  • Ability to be functionalized
  • Electrical conductivity as high as copper,
    thermal conductivity as high as diamond

Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
14
CNT Biosensor Structure
Succinimidyl ester
Source Chen et al., 2001
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
15
CNT Uncoated vs. Coated
Source Chen et al., 2001
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
16
Carbon Nanotube Biosensors
Source Chen et al., 2001
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
17
CNT Biosensor Signal Detection
Glucose
O2
Gluconic Acid
H2O2
e-
Source Besteman et al., 2003
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
18
CNT Biosensor Signal Detection
e-
e-
e-
e-
e-
Effectively increases electrical current
Source Besteman et al., 2003
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
19
CNT Biosensor Results
160 mM
60 mM
20 mM
0 mM
Source Besteman et al., 2003
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
20
BioFET
  • Draws upon versatility of common electronic
    component (Field-Effect Transistor)
  • Well understood expectations/results

Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
21
FET
-
Drain
Gate
Insulator
Source







Source Hayes Horowitz, 1989
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
22
FET

-
Drain
Gate
Insulator
Source




(Not conductive enough)
(Electron Channel)
-
-
-
-
-
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
23
FET

-
Threshold Voltage
Drain
Gate
Insulator
Source




Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
24
FET

-
Drain
Gate
Insulator
Source








-
-
-
-
-
-
-
-
-
-
-
-
-
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
25
BioFET
Source Im et al., 2007
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
26
BioFET
Source Im et al., 2007
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
27
BioFET Results
Gate (before)
Source Im et al., 2007
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
28
BioFET Results
Gate (w/ complete Biomolecule)
Gate (after etch, w/biotin)
Source Im et al., 2007
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
29
Whole Cell Sensors
Source http//www.whatsnextnetwork.com/technology
/media/cell_adhesion.jpg
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
30
Whole Cell Sensors
  • Harness normal genetic processes
  • May detect dozens of pathogens
  • Modifiable/customizable
  • Reports bioavailability
  • Temperature/pH sensitive
  • Short shelf-life

Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
31
Whole Cell Sensors
Source Daunert et al., 2000
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
32
Action-Potential Biosensor
Source Tonomura et al., 2006
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
33
Action-Potential Biosensor
(Side view)
Source Tonomura et al., 2006
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
34
Action-Potential Biosensor
Suction
Source Tonomura et al., 2006
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
35
Action-Potential Biosensor
Suction
Source Tonomura et al., 2006
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
36
Action-Potential Biosensor
Source Tonomura et al., 2006
Carbon N-T
E-DNA
BioFET
Whole Cell
Summary
Introduction
37
Summary
  • Use of biomolecules in sensors offers
  • Extreme sensitivity
  • Flexibility of use
  • Wide array of detection
  • Universal application

Carbon N-T
E-DNA
BioFET
Introduction
Whole Cell
Summary
38
Summary
  • But still maintains challenges of
  • pH/Temperature sensitivity
  • Degradation
  • Repeatable use
  • Regardless of challenges
  • Biosensors will permeate future society

Carbon N-T
E-DNA
BioFET
Introduction
Whole Cell
Summary
39
References
  • K McKimmie. Whats a Biosensor, Anyway?,
    Indiana Business Magazine, 2005, 49, 118-23.
  • N Zimmerman. Chemical Sensors Market Still
    Dominating Sensors, Materials Management in
    Health Care, 2006, 2, 54.
  • K Odenthal, J Gooding. An introduction to
    electrochemical DNA biosensors, Analyst, 2007,
    132, 603610.
  • S V Lemeshko, T Powdrill, Y Belosludtsev, M
    Hogan, Oligonucleotides form a duplex with
    non-helical properties on a positively charged
    surface, Nucleic Acids Res., 2001, 29,
    30513058.
  • F Ricci, R Lai, A Heeger, K Plaxco, J Sumner.
    Effect of Molecular Crowding on the Response of
    an Electrochemical DNA Sensor, Langmuir, 2007,
    23, 6827-6834.
  • M Heller. DNA Microarray Technology, Annual
    Review of Biomedical Engineering, 2002, 4,
    129-153.
  • E Boon, D Ceres, T Drummond, M Hill, J Barton,
    Mutation Detection by DNA electrocatalysis at
    DNA-modified electrodes, Nat. Biotechnol. 2000,
    18, 1096-1100.
  • S Timur, U Anik, D Odaci, L Gorton, Development
    of a microbial biosensor based on carbon nanotube
    (CNT) modified electrodes, Electrochemistry
    Communications, 2007, 9, 1810-1815.
  • K Besteman, J Lee, F Wiertz, H Heering, C Dekker.
    Enzyme-Coated Carbon Nanotubes as
  • Single-Molecule Biosensors, Nano Letters, 2003,
    3, 6 727-730.
  • R Chen, Y Zhang, D Wang, H Dai. Noncovalent
    Sidewall Functionalization of Single-Walled
    Carbon Nanotubes for Protein Immobilization, J.
    Am. Chem. Soc., 2001, 123, 16 3838 -3839.
  • K Balasubramanian, M Burghard. Biosensors based
    on carbon nanotubes, Anal. Bioanal. Chem., 2005,
    385, 452-468.
  • Hayes Horowitz, Student Manual for the Art of
    Electronics, Cambridge Univ. Press, 1989.
  • I Hyungsoon, H Xing-Jiu, G Bonsang, C Yang-Kyu.
    A dielectric-modulated field-effect transistor
    for biosensing, Nature Nanotechnology, 2007, 2,
    430 434.
  • D Therriault. Filling the Gap, Nature
    Nanotechnology, 2007, 2, 393 - 394.
  • S Daunert, GBarrett, J Feliciano, R Shetty, S
    Shrestha, W Smith-Spencer. Genetically
    Engineered Whole-Cell Sensing Systems Coupling
    Biological Recognition with Reporter Genes,
    Chem. Rev. 2000, 100, 2705-2738.
  • T Petänen, M Romantschuk. Measurement of
    bioavailability of mercury and arsenite using
    bacterial biosensors, Chemosphere, 2003, 50,
    409-413.
  • F Roberto, J Barnes, D Bruhn. Evaluation of a
    GFP Reporter Gene Construct for Environmental
    Arsenic Detection., Talanta. 2002, 58,
    1181-188.
  • W Tonomura, R Kitazawa, T Ueyama, H Okamura, S
    Konishi. Electrophysiological biosensor with
    Micro Channel Array for Sensing Signals from
    Single Cells, IEEE Sensors, 2006, 140-143.

40
Questions?
Carbon N-T
E-DNA
BioFET
Introduction
Whole Cell
Summary
About PowerShow.com