SERS-based Biosensors - PowerPoint PPT Presentation

Loading...

PPT – SERS-based Biosensors PowerPoint presentation | free to download - id: 3c49c1-NzBiM



Loading


The Adobe Flash plugin is needed to view this content

Get the plugin now

View by Category
About This Presentation
Title:

SERS-based Biosensors

Description:

James Krier, Lalitha Muthusubramaniam Kevin Wang, Douglas Detert Final Presentation EE235: Nanofabrication May 12, 2009 TIR - propagating light encounters a boundary ... – PowerPoint PPT presentation

Number of Views:332
Avg rating:3.0/5.0
Slides: 34
Provided by: lightEecs1
Category:
Tags: sers | based | biosensors

less

Write a Comment
User Comments (0)
Transcript and Presenter's Notes

Title: SERS-based Biosensors


1
SERS-based Biosensors
  • James Krier, Lalitha Muthusubramaniam
  • Kevin Wang, Douglas Detert
  • Final Presentation
  • EE235 Nanofabrication
  • May 12, 2009

2
Overview
  • Technology Landscape Optical techniques for
    biosensing
  • Surfaced-enhanced Raman scattering (SERS)
  • Technical background
  • SERS-based biosensors
  • Financial and market considerations of SERS

3
Vast Technology Landscape
Diverse Applications
4
Total internal reflectance fluorescence (TIRF)
biosensor
TIR
Evanescent wave
http//www.microscopyu.com/articles/fluorescence/t
irf/tirfintro.html
5
Typical TIRF Sensogram
Advantages High Signal to noise ratio (very
little secondary emission from bulk
solution) Highly robust, low cost,
portable Drawbacks Need for labels High
cross-reactivity (hence not easy to multiplex)
http//www.tirftechnologies.com/principles.php
6
Molecularly Imprinted Polymers as Optical Sensors
Schematic representation of molecular imprinting
Distribution of binding affinities in MIP vs. Ab
Chemical Reviews, Chem. Rev.,100 2495 (2000)
7
3 methods to monitor binding in MIPs
  • Direct monitoring of analyte in solution
    Incorporation of spectroscopically responsive
    monomers into the matrixCompetition assays using
    labeled ligands

Polymer International, Vol 56( (4), pp. 482-488
8
Reflectometric interference spectroscopy (RIFS)
  • The reflected beams superimpose and change
    optical thickness of the transducer by binding
    events onto the surface. Shift in characteristic
    interference spectrum is transformed into a
    signal curve.

J. Immunological Methods Vol 292, Issues 1-2,
September 2004, pp.35-42
9
Reflectometric interference spectroscopy (RIFS)
Protein concentration determined
spectrophotometrically and active antibody
concentration determined by biosensor and ELISA
for 9 sequentially eluted fractions.
J. Immunological Methods Vol 292, Issues 1-2,
September 2004, pp.35-42
10
The SERS Solution
Adsorption
Excitation
Detection
11
Raman Spectroscopy
C.V. Raman
http//www.kamat.com/database/content/pen_ink_port
raits/c_v_raman.htm Adapted from
http//upload.wikimedia.org/wikipedia/commons/8/87
/Raman_energy_levels.jpg
12
Raman Spectroscopy
  • Selection rules
  • Based on symmetry elements of polarizability
    tensor
  • Vibrational fingerprint
  • Comprised of narrow spectral features
  • Robust mechanism
  • Not subject to photobleaching
  • Weak Signal
  • Compared to Rayleigh scattering / fluorescence

Provides rich info. about structural data!
Gelder, et al., J. Raman Spectrosc., 38 1133
(2007) A. Campion et al., Chem. Soc. Rev., 27 241
(1998)
13
Surface-Enhanced Raman Scattering
M. Fleischmann, et al., Chem. Phys. Lett., 26 163
(1974) D.L. Jeanmaire, R.P. Van Duyne, J.
Electroanal. Chem., 84 1 (1977) M.G. Albrecht, J.
A. Creighton, J. Am. Chem. Soc., 99 15 (1977) S.
Schultz, et al., Surface Science, 104 419 (1981)
M. Moskovits, , Reviews of Modern Physics, 57 3
(1985) K. Kneipp, et al., Chem. Rev., 99 2957
(1999)
14
SERS Enhancement
  • Chemical Enhancement
  • Based on metal-molecule charge-transfer effects
  • Electromagnetic enhancement
  • Coupled to surface plasmon excitation of metal
    nanostructures

Tunable resonances Shape- and Size-effects
A.J. Haes, et al., Anal. Bioannal. Chem., 379 920
(2004) S. A. Maier, et al., Adv. Mater., 13
1501 (2001)
15
SERS Enhancement
Enhancing SERS substrates
  • Plasmon resonance leads to local field
    enhancement near the surface
  • Adsorbed molecules see increased field
  • Raman signal enhancement (up to 1015)
  • Depends on local geometry of adsorption site

K. Kneipp, et al., Chem. Rev., 99 2957 (1999) J.
Aizpurua, et al., Phys. Rev. Lett., 90 057401-1
(2003)
16
The SERS Advantage
  • Molecular fingerprinting
  • Unique vibrational spectra distinguishes
    molecules
  • Tagless biosensing
  • Fluorescent dyes are not needed
  • Multiplexed sensing
  • Plasmon resonances allow for sensor tunability
  • In vivo applicability
  • Near-IR excitation and biocompatability allow
  • Femtomolar and beyond
  • Single molecule spectroscopy is possible

S.M. Nie, et al., Science, 275 1102
(1997) http//www.oxonica.com/diagnostics/diagnost
ics_sers_imaging_applications.php
17
Single Molecule Detection
PRL 78, 1667 (1997)
18
TERS
nanowerk.com
19
TERS
Faraday Discuss., 132, 9 (2006)
20
TOPOGRAPHY SPECTROSCOPY
PRL 100, 236101 (2008)
21
In-vivo glucose sensing
Faraday Discuss., 132, 9 (2006)
22
Other Options
PRL 62, 2535 (1989).
23
More Moerner et al.
Nature 402, 491 (2000).
24
stanford.edu/group/moerner/sms_movies.html
25
NSOM
JPC 100, 13103 (1996)
26
SERS Market
  • Consumables
  • 50 to 750 per analysis
  • 1 million market annually
  • Instrumentation
  • 10,000 - 180,000

Image source http//senseable.mit.edu/nyte/visual
s.html (New York Talk Exchange) Numbers
http//www.thefreelibrary.com/MarketprofileSERS
-a0137966471
27
SERS Companies
  • Bruker Optics
  • D3 Technologies (Mesophotonics)
  • Oxonica
  • Renishaw
  • Real Time Analyzers

http//www.brukeroptics.com/raman.html
28
SERS Vials
  • Real Time Analyzers
  • Sol-gel of Au or Ag nanoparticles
  • 106 signal enhancement

www.rta.biz
29
Portable Raman
  • Real Time Analyzers RamanID
  • DeltaNu Inspector Raman

Diesel Fuel Spectrum
30
SPR Companies
  • Biacore (GE)
  • Biosensing Instrument
  • FujiFilms
  • GWC Technologies
  • Ibis
  • Sensiq

31
SPR Analyzer
  • Biosensing Instrument BI-2000
  • Cost 39k
  • Liquid/Gas Detection
  • 10-4 degree sensitivity

32
Cost Comparison
33
Conclusion SERS
  • Even simple (diatomic) molecules can have complex
    and reproducible vibrational fingerprints
  • The most practical option for sensing near the
    single-molecule level for a variety of analytes
    in solution or air, lending to an array of
    applications ranging from trace gas detection to
    automated protein identification
  • Easy to couple with other supplementary
    techniques (e.g., AFM)
  • Provides an economically feasible sensing
    mechanism for portable devices in atmospheric
    conditions
About PowerShow.com