Distributions of Mutations Associated with Sensorineural Hearing Loss - PowerPoint PPT Presentation

About This Presentation
Title:

Distributions of Mutations Associated with Sensorineural Hearing Loss

Description:

2 had EVA, one of which ... are shown in Green. Polymorphisms are shown in ... see Enlarged Vestibular Aqueduct (EVA) or Mondini dysplasia. Reference ... – PowerPoint PPT presentation

Number of Views:127
Avg rating:3.0/5.0
Slides: 29
Provided by: dee3
Category:

less

Transcript and Presenter's Notes

Title: Distributions of Mutations Associated with Sensorineural Hearing Loss


1
Distributions of Mutations Associated with
Sensorineural Hearing Loss
  • 2006 National EHDI Conference
  • Alan Shanske, M.D., FAAP, FACMG
  • Center for Craniofacial Disorders
  • Childrens Hospital at Montefiore
  • Bronx, New York
  • February 2, 2006

2
Faculty Disclosure Information
  • In the past 12 months, I have not had a
    significant financial interest or other
    relationship with the manufacturer(s) of the
    product(s) or provider(s) of the service(s) that
    will be discussed in my presentation.
  • This presentation will not include discussion of
    pharmaceuticals or devices that have not been
    approved by the FDA or of off-label uses of
    pharmaceuticals or devices.

3
Congenital Hearing Loss
  • Epidemiology
  • 1/1000 infants affected
  • Etiology
  • 50 genetic
  • 70 non-syndromic sensorineural hearing loss
    (SNHL)
  • 77 autosomal recessive
  • 52 loci known 34 identified
  • 22 autosomal dominant
  • Remainder are mitochondrial or X-linked

4
Clinical evaluation of hearing loss
  • History
  • Prenatal
  • Infections, medication exposure
  • Neonatal
  • Prematurity, hyperbilirubinemia, infections,
    medications
  • Childhood
  • Ear infections, antibiotics, medical problems
  • Family history

5
Clinical evaluation of hearing loss
  • Physical exam
  • Dysmorphic features
  • Ear malformations or effusions
  • Skin (NF2)
  • Hair and eyes (Waardenburg)
  • Testing
  • EKG (Jervell and Lange-Nielsen syndrome)
  • /- urinalysis
  • CT scan of temporal bones
  • Genetic testing

6
GJB2
  • Encodes connexin 26 (Cx26)
  • Gap junction protein in the cochlea
  • Maps to 13q12
  • 2263 nucleotides, 680 amino acids
  • Two exons one coding exon
  • CpG island near Exon 1

7
GJB2
  • AR mutations account for 15 40 of inherited
    SNHL in North America
  • Carrier rate of 133 in Europeans
  • Most common mutation in Caucasians 35delG
  • Mutation spectrum is known to differ by ethnic
    group

8
Gap Junction Channels
  • From Rabionet et al in TRENDS in Molecular
    Medicine Vol.8 No.5 May 2002

9
Expression of Cx26, Cx30 and Cx31 in the Cochlea
  • From Rabionet et al in TRENDS in Molecular
    Medicine Vol.8 No.5 May 2002

10
Preliminary Study
  • Chart review of 107 patients
  • Referred to CHAM for genetic evaluation of SNHL
  • Data collected
  • Ethnicity
  • Cx26 mutation status
  • mtDNA DNA analysis (nt 1555, 7445, 3243,
    sequencing of 12s rRNA)
  • CT scan of temporal bones

11
Available Samples
  • 107 Samples obtained from IRB approved research
    project looking for mtDNA point mutations in SNHL
  • 192 Controls provided by Dr. Robert Burk from HPV
    study

12
mtDNA and CT Results
  • one Puerto Rican patient
  • A503G variant mtDNA mutation at nt 1465
  • no patient had A1555G or T7445C associated with
    SNHL
  • 31 patients had CT scan results
  • 2 had EVA, one of which carries G79A
  • 1 had ? Mondinis, 1 had prominence of cochlear
    aqueducts, 1 had diffuse atrophy

13
Project design
  1. Designing primers for PCR
  2. Overcoming the GC content
  3. Primers for Exons 12, and CpG island
  4. Sequencing PCR products
  5. Identifying sequence variants with Sequencher
  6. Examine for known SNPs
  7. Screening controls with Pyrosequencing

14
CpG Island Primers
  • CGCCAGGTTCCTGGCCGGGCAGTCCGGGGCCGGCGGGCTCACCTGCGTC
    GGGAGGAAGCGCGGCGGGGCCGGGGCGGGGGTCTCGGCGTTGGGGTCTCT
    GCGCTGGGGCTCCTGCGCTCCTAGGCGGGTCCTGGGCCGGGCGCCGCCGA
    GGGGCTCCGAGTCGGGGAGAGGAGCGCGCGGGCGCTGCGGGGCCGCAACA
    CCTGTCTCCCGCCGTGGCGCCTTTTAACCGCACCCCACACCCCGCCTCTT
    CCCTCGGAGACTGGGAAAGTTACGGAGGGGGCGGCGCCGCGGGCGGAGCG
    CGCCCGGCCTCTGGGTCCTCAGAGCTTCCCGGGTCCGCGAACCCCCGACC
    GCCCCCGAAAGCCCCGAACCCCCCAAGTCCCCTTCGAGGTCCCGATCTCC
    TAGTTCCTTTGAGCC

15
Exon 1 Primers
  • CCCAAGGACGTGTGTTGGTCCAGCCCCCCGGTTCCCCGAGACCCACGCG
    GCCGGGCAACCGCTCTGGGTCTCGCGGTCCCTCCCCGCGCCAGGTTCCTG
    GCCGGGCAGTCCGGGGCCGGCGGGCTCACCTGCGTCGGGAGGAAGCGCGG
    CGGGGCCGGGGCGGGGGTCTCGGCGTTGGGGTCTCTGCGCTGGGGCTCCT
    GCGCTCCTAGGCGGGTCCTGGGCCGGGCGCCGCCGAGGGGCTCCGAGTCG
    GGGAGAGGAGCGCGCGGGCGCTGCGGGGCCGCAACACCTGTCTCCCGCCG
    TGGCGCCTTTTAACCGCACCCCACACCCCGCCTCTTCCCTCGGAGACTGG
    GAAAGTTACGGA

16
Exon 2 Coding Region Primers
  • TTATTATAGAGATTATATTTTAATGTTTTAAATGTATTTGATACATTACA
    AAATTATTTTAGTTACA
  • AGCATATCATTAAAGCTATTCTTTATTATTACAAAATGCTTTTACAATGC
    TATTCTTGACAACAGG
  • AAAATACTTACCCTCACTGAAATATGTGGAGTACCATTTTTTGGAAACCA
    TGTCAAGCATAATGGC
  • AATATTCAGGTTCAATCTTCCTATAGATCTGCTCAATATTTATCTAAACC
    TTAGCTTCTATTCTTTT
  • CACATGTTATTAGCTATATTTTCACTTAAAAAATTGGAGGCTGAAGGGGT
    AAGCAAACAAACTTT
  • TGAAGTAGACAAAGCTCATCTTTAATCAACAGACTTTAGAGTCCAGTCTT
    TCCAAATCTGTTTTTA
  • ACGACAGAAACTTCTCCCTCCCCTGCCCCATTTTGTCCTCCCCATTAAAT
    GGTACTGTGTCAATAAA
  • ATTCCCAAGCGACCTCTTTAAATCAGCGTTCTTTCCGATGCTGGCTACCA
    CAGTCATGGAAAAGG
  • AGATGTGTTGGACAGGCCTGTCATTACAGGTAGTAGTTGGTGGTACATCC
    AGTCTGTATTTCTTA
  • CACAAAATTACATCTAAATATTTGACATGAGGCCATTTGCTATCATAAGC
    CATCACTAGGAACTTC
  • TAGTCTGTCTCACTCGATTGAGGCTACAATGTTGTTAGGTGCTATGACCA
    CAATGAATACAACAG
  • ACAGCCTCTCAGCTGTGCTGCAAAGTATTCATAACCAAAAGACCATATTT
    CAAATTAAATCATAGT
  • AGCGAATGACATACCATTTACATATTACAATCTGAGCCTCTGAAACAGGG
    GGAACATATAATGGT
  • ATCCAGAACATCTTTACATCAAAATAACCTATCATACTACAAAGTTTTCA
    CTTCCAAAAAGTGTAAC
  • AGAGTTTAAGGCACTGGTAACTTTGTCCACTGTTAGAGATTAAAACTTCC
    AAAGCAAATGAAAGA
  • ACCAATGTTCACCTTTAACGTGGGGAAAGTTGGCAAAAAGAACCCCAGGA
    GGACACCCAAACCTT
  • CTCTGTGTCCTCTGTGGAACCTGGCTTTTTTCTCTTGTCCTCAGAGAAAG
    AAACAAATGCCGATAT
  • CCTCTGTTTAAAATATGAAAGTACCTTACACCAATAACCCCTAACAGCCT
    GGGGTCTCAGTGGAAC
  • TAACTTAAGTGAAAGAAAATTAAGACAGGCATAGAATTAGGCCTTTGTTT
    TGAGGCTTTAGGGG

_________________________________________________
___CTACAGGGGTTTCAAATGGTTGCATTTAAGGTCAGAATCTTTGTGTT
GGGAAATGCTAGCGACTGAGCCTTGACAGCTGAGCACGGGTTGCCTCATC
CCTCTCATGCTGTCTATTTCTTAATCTAACAACTGGGCAATGCGTTAAAC
TGGCTTTTTTGACTTCCCAGAACAATATCTAATTAGCAAATAACACAATT
CAGTGACATTCAGCAGGATGCAAATTCCAGACACTGCAATCATGAACACT
GTGAAGACAGTCTTCTCCGTGGGCCGGGACACAAAGCAGTCCACAGTGTT
GGGACAAGGCCAGGCGTTGCACTTCACCAGCCGCTGCATGGAGAAGCCGT
CGTACATGACATAGAAGACGTACATGAAGGCGGCTTCGAAGATGACCCGG
AAGAAGATGCTGCTTGTGTAGGTCCACCACAGGGAGCCTTCGATGCGGAC
CTTCTGGGTTTTGATCTCCTCGATGTCCTTAAATTCACTCTTTATCTCCC
CCTTGATGAACTTCCTCTTCTTCTCATGTCTCCGGTAGGCCACGTGCATG
GCCACTAGGAGCGCTGGCGTGGACACGAAGATCAGCTGCAGGGCCCATAG
CCGGATGTGGGAGATGGGGAAGTAGTGATCGTAGCACACGTTCTTGCAGC
CTGGCTGCAGGGTGTTGCAGACAAAGTCGGCCTGCTCATCTCCCCACACC
TCCTTTGCAGCCACAACGAGGATCATAATGCGAAAAATGAAGAGGACGGT
GAGCCAGATCTTTCCAATGCTGGTGGAGTGTTTGTTCACACCCCCCAGGA
TCGTCTGCAGCGTGCCCCAATCCATCTTCTACTCTGGGCGGTTTGCTCTG
GAAAAGACGAATGCACACAACACAGGAATCACTAGCTAGGACAGAACAGG
GAGACTTCTCTGAGTCTGGGTAAGC
17
35delG
167delT
35delG and 167delT compound heterozygote of mixed
Jewish, Italian and Irish decent. Deletion alters
chromatogram alignment, which is corrected with
the deletion on the opposite chromosome. Both
35delG and 167delT lead to frameshift mutations.
C-34T variant
Patient with a C-34T variant and a G79A
polymorphism. Is there significance to these
changes when they co-occur?
18
Patient from consanguineous Dominican family with
a G139T homozygous mutation, leading to
substitution of Valine for Glutamine at amino
acid 47, initiating a premature STOP.
Start Codon
G139T homozygous
35delG common mutation in Caucasian population,
found in two Puerto Rican patients and one of
mixed Italian, Irish and Jewish decent.
35delG leads to a frameshift mutation, as seen on
this chromatogram.
19
(No Transcript)
20
  • Schematic of Connexin 26 domains with mutations
    and polymorphisms included
  • Mutations, polymorphisms and variants exhibited
    in our study are circled
  • Mutations are shown in Green
  • Polymorphisms are shown in Purple
  • Variants of unknown significance are shown in
    Orange
  • Also seen in our study were 9 patients with
    C-34T, in the 5UTR, not previously described
  • We noted sequence variations at nucleotide 765,
    with 65/35 C/T

http//ent.md.shinshu-u.ac.jp/deafgene25/nonsyndr
omic/ohtsuka.gif
21
HE Heterozygote
22
HE Heterozygote HO Homozygote
23
Results
  • one Dominican patient was homozygous for a
    mutation in GJB2 (G139T)
  • GJB2 mutations occur in 1/33 European controls
    (35delG in 2-4)
  • only one Hispanic 35delG carrier in our controls
    all other nucleotide changes were polymorphisms
    or novel variants

24
Conclusions
  • GJB2 mutations occur less frequently in our
    minority population
  • lower carrier frequencies may account for the
    lower rate of homozygous individuals in our
    population
  • possible synergistic interaction of heterozygous
    GJB2 mutations and a mutation in another gene
    such as GJB6

25
Future studies
  • Patient recruitment
  • JMC NICU and nursery
  • JMC audiology clinic
  • CHAM Craniofacial Center
  • Controls
  • Hope for
  • 50 cases/year 300 controls/year

26
Future Directions
  • Cx30
  • Adjacent to GJB2
  • Mutations are rare
  • May lead to AD late onset deafness
  • Deletions
  • Homozygous ? deafness
  • Heterozygous in trans with GJB2 mutation ?
    deafness

27
Future Directions
  • SLC26A4
  • Encodes monovalent and divalent anion transporter
    related proteins (Pendrin)
  • Involved in fluid homeostasis
  • Mutations cause Pendred syndrome (AR defects of
    thyroid, kidney and inner ear)
  • Often also see Enlarged Vestibular Aqueduct (EVA)
    or Mondini dysplasia

28
Reference List
  • For more information on this topic, see the
    following publications
  • Marazita ML, et al., (1993) Genetic epidemiologic
    studies of early-onset deafness in the U.S.
    school-age population. Am J Med Genet
    46486-491).
  • Kelsell DP, et al., (1997) Connexin 26 mutations
    in hereditary non-syndromal sensoineural
    deafness. Nature 387(6628)80-83.
  • Morton, C (2002) Genetics, genomics and gene
    discovery in the auditory system. Human Molecular
    Genetics 11(10)1229-1240.
  • Rabionet R, et al., (2002) Connexin mutations in
    hearing loss, dermatological and neurological
    disorders. Trends in Mol Med 8(5)205-212).
  • Pandya, A, et al., (2003) Frequency and
    distribution of GJB2 (connexin 26) and GJB6
    (connexin 30) mutations in a large North American
    repository of deaf probands. Genet Med
    5(4)295-303.
  • Additional information may be found at
  • http//davinci.crg.es/deafness/
Write a Comment
User Comments (0)
About PowerShow.com