Design of Mechanically Stabilized Earth Walls - PowerPoint PPT Presentation

Loading...

PPT – Design of Mechanically Stabilized Earth Walls PowerPoint presentation | free to view - id: 12ee66-YzE1N



Loading


The Adobe Flash plugin is needed to view this content

Get the plugin now

View by Category
About This Presentation
Title:

Design of Mechanically Stabilized Earth Walls

Description:

Eccentricity at base: e L/6 in soil; e L/4 in rock. Bearing capacity: FS 2.5 ... Eccentricity(e/L) 0.096. Overturning 5.06. Bearing 5.50. Internal. Rupture 1.07 ... – PowerPoint PPT presentation

Number of Views:1315
Avg rating:5.0/5.0
Slides: 36
Provided by: Technology71
Category:

less

Write a Comment
User Comments (0)
Transcript and Presenter's Notes

Title: Design of Mechanically Stabilized Earth Walls


1
Design of Mechanically Stabilized Earth Walls
Prof. Jie Han, Ph.D., PE The University of Kansas
2
Outline of Presentation
  • Introduction
  • External Stability Analysis
  • Internal Stability Analysis
  • Local Stability Analysis

3
Illustrated Cross Section
4
Publications
  • FHWA Demo 82 - Federal Highway Administration
  • Demonstration Project 82 Manual (1997)/AASHTO
  • MSEW/MesaPro Software
  • NCMA - National Concrete Masonry Association
  • Design Manual (Second Edition, 1997)
  • SRWall - NCMA Segmental Retaining Wall Software

This presentation will focus on FHWA DEMO 82
5
Wall Systems and Reinforcement
Wall Systems
  • Segmental (modular) block walls
  • Panel walls

Reinforcement
  • Inextensible - metal reinforcement (steel strips
    or mesh)
  • Extensible - geosynthetic reinforcement
    (geotextile or geogrid)

6
Reinforced Fill
Free draining backfill - cohesion, c 0
7
Potential Failure Plane Extensible
Reinforcement
w 0 100
Rankine failure plane
b
a 450f/2
La
Le
w gt 100
w
H
Coulomb failure plane
a f f(f, b, d, w)
a
d b
L
8
Potential Failure Plane - Inextensible
Reinforcement
0.3H1
H1/2
La
Le
H1
H
H1/2
9
Requirements for Reinforcement Length
  • L/H gt 0.7
  • L gt 8 ft
  • Le gt 3 ft

10
Recommended Factors of Safety
External
  • Sliding FS ? 1.5
  • Eccentricity at base e ? L/6 in soil e ? L/4
    in rock
  • Bearing capacity FS ? 2.5
  • Deep seated stability FS ? 1.3
  • Compound stability FS ? 1.3

Internal
  • Pullout FS ? 1.5
  • Rupture see detailed discussion
  • Internal sliding FS ? 1.5

11
  • External Stability Analysis

12
External Stability - Force Diagram (Static)
W2
b
W1
Ps
H1
b
H1/3
L
13
Coefficient of External Active Earth Pressure
(Static)
w 0 100
w gt 100
d ?
14
External Stability - Base Sliding
Sliding resisting force
FSsliding
Sliding driving force
15
External Stability - Overturning
Resisting moment about toe
FSoverturning
Driving moment about toe
16
External Stability - Bearing Capacity
W2
Meyerhof-type distribution
L - 2e
b
qa
W1
Ps
H1
Ultimate bearing capacity, qult
b
Footing width, L-2e and no embedment effect
H1/3
L
Factor of safety
FS qult/qa
17
  • Internal Stability Analysis

18
Force Diagram (Static)
S1/2hs
q gS
hs
z
qr gz
H
pa1KagH
pa2KagS
19
Coefficient of Internal Active Earth Pressure
w 0 100
w gt 100
20
Variation of Internal Pressure Ratio with Depth
1.0
1.2
1.7
2.5
K/Ka
Metal bar mats welded wire grids
Metal strips
6m
Depth, z
Geosynthetics
21
Internal Stability - Internal Sliding
b
Ps
h
b
h/3
L
22
Maximum Tension in Reinforcement
Pa
Sv
Tmax
Tmax Pa
23
Internal Stability - Rupture or Strength
Metal reinforcement
Long Term Allowable Strength Ta FS x A0 x fy ?
Tmax FS 0.55 for strip or 0.48 for grid A0 No
of longitudinal bars x As, As - bar section area
Geosynthetics
Long Term Design Strength Tal Tult/(RF) RF
RFcreep x RFdurability x RFinstallation damage FS
Tal/Tmax ? 1.5
24
Internal Stability - Pullout
25
  • Local Stability Analysis

26
Connection Test
27
Local Stability - Facing Connection
Rupture
CRu Ttultconn/Tlot
Tultconn TultCRu
Ttultconn(Tult/Tlot)
28
Local Stability - Facing Connection
Pullout or Displ. _at_ 0.6
CRs Ttconn/Tlot
Tconn TultCRs Ttconn(Tult/Tlot)
(FS Tc/Tmax gt 1.5)
29
Local Stability - Bulging or Shear
  • Maximum reinforcement Spacing

2 x block depth 2 ft. for most blocks
30
Local Stability - Crest Toppling
  • One-half reinforcement spacing

31
  • Case Studies

32
Case Study -1
Wall Height H 20 ft Backslope b 00 Batter w
0.450 Friction Angle (All) f 300 MESA4
Geogrids Reinforcement Length L 15 ft Spacing s
2 ft Interaction Coefficient Ci 0.58
33
Results of Case Study -1A(Static)
External FS Base Sliding
2.58 Eccentricity(e/L) 0.096 Overturning
5.06 Bearing 5.50 Internal Rupture
1.07 Pullout 4.23 Internal Sliding
1.72 Local Connection Rupture 1.23 Connection
PO/Service 1.11
34
Case Study -2
Wall Height H 20 ft Backslope b 260 Batter w
0.450 Friction Angle (All) f 300 MESA4
Geogrids Reinforcement Length L 15 ft Spacing s
2 ft Interaction Coefficient Ci 0.58
35
Results of Case Study -2A (Static)
External FS Base Sliding
1.46 Eccentricity(e/L) 0.120 Overturning
2.58 Bearing 3.33 Internal Rupture
0.90 Pullout 5.29 Internal Sliding
0.92 Local Connection Rupture 1.04 Connection
PO/Service 0.94
About PowerShow.com