CHAPTER 10 MULTIPLE REGRESSION OF TIME SERIES LINEAR MULTIPLE REGRESSION MODEL General Multiple Regr - PowerPoint PPT Presentation

1 / 58
About This Presentation
Title:

CHAPTER 10 MULTIPLE REGRESSION OF TIME SERIES LINEAR MULTIPLE REGRESSION MODEL General Multiple Regr

Description:

Think about the model from every angle, hypothesize how different ... Impatience is the enemy of valid models. Contemplation is productive work.' The Author ' ... – PowerPoint PPT presentation

Number of Views:533
Avg rating:3.0/5.0
Slides: 59
Provided by: stephena84
Category:

less

Transcript and Presenter's Notes

Title: CHAPTER 10 MULTIPLE REGRESSION OF TIME SERIES LINEAR MULTIPLE REGRESSION MODEL General Multiple Regr


1
CHAPTER 10MULTIPLE REGRESSION OF
TIME SERIESLINEAR MULTIPLE REGRESSION MODEL
General Multiple Regression Model
2
BIG CITY BOOKSTORE EXAMPLE Multiple
Regression Model Coefficient of Multiple
Determination-R2 Partial Regression
Coefficients Describing the Regression Plane

3
MULTIPLE
REGRESSION MODELING MULTICOLLINEARITY
Collinearity Among Variables Solutions to
Multicoll. Problems An Example
Solution PARTIAL F-TEST FOR VARIABLES SERIAL
CORRELATION PROBLEMS Forecasting with
Serially Correlated Errors
4
STOCK INDEXES USING
COILS ELASTICITIES AND LOGARITHMS
HETEROSCEDASTICITY
Wrong Form Of UK US Stock Index
Model Goldfeld-Quandt Test










5
Interpretation of Elasticities ?
WEIGHTED LEAST SQUARES ? GENERALIZED LEAST
SQUARES ? BETA COEFFICIENTS ?
DICHOTOMOUS (DUMMY) VARS. FOR MODELING EVENTS
6
? CONSTRUCTING CONFIDENCE AND
PREDICTION INTERVALS ? PARSIMONY AND
REGRESSION ANALYSIS ? AUTOMATED
REGRESSION METHODS
7

CHAPTER 10 MULTIPLE REGRESSION
OF TIME SERIES "Theorize longer,
analyze shorter. Don't be in a rush to run the
program. Think about the model from every angle,
hypothesize how different variables affect each
other. When you have a theory, then try it.
Impatience is the enemy of valid models.
Contemplation is productive work." The
Author"Measure twice, cut once." The
Carpenter's Rule
8
GENERAL LINEAR MULTIPLE
REGRESSIONGeneral Multiple-Regression Model
Y a b1X1 b2X2...bnXn e
(10-1)"n" is rarely above 6 to 7.
9
BIG CITY BOOKSTORE
EXAMPLETable 10-1. Big City Bookstore
-------------------------------------------------
Year Sales(Y) Advertising(X1) Competition
(X2) (1000) (1000)
(1000sq.ft.) 1 27 20
10 2 23 20
15 3 31 25 15
4 45 28 15 5
47 29 20 6
42 28 25 7 39
31 35 8 45
34 35 9 57
35 20 10 59 36
30 11 73 41
20 12 84 45
20--------------------------------------------
-----
10
Multiple Regression Model
Correlation Matrix
Sales Advertising CompetitionSales 1
.964 .221Advertising .964
1 .426 Competition .221
.426 1
11
SALES f(ADV.) IGNORING COMPETITION
Yt -23.02 2.280X1 (10-2)
(-3.64) (11.5) (X1 advertising)
Syx 5.039 R2 .923 n12
F132.26 DW 1.13676
12
SALES f(COMP.) IGNORING
ADVERTISING Yt 37.34 .477X2
(10-3) (2.339) (.687)
(X2competition) Syx18.574 R2 -.045
n12 F.507 DW .3767
13
SALES f(ADV. AND COMP)
SIMULTANEOUSLYYt -18.80 2.525X1 - .545X2
(10-4) (-4.879) (19.50)
(-4.432) Syx2.978 R2.973 n12
F199.21 DW 1.7705
14
Table 10-2. Simple and Multiple
Regression for Big City Bookstore---------------
----------------------------------a) Linear
Regression Salesf(Advertising)-Eq.10-2----------
--------------------------------------- 1
Dependent Variable SALES 2 Usable Observations
12 Degs of Freedom 10 3 R Bar2
0.9227 4 Std Error of
Dependent Variable 18.1225 5 Standard
Error of Estimate 5.0394 6 Sum of
Squared Residuals 253.9530 7
Regression F(1,10) 132.26 8
Significance Level of F 0.00000044 9
Durbin-Watson Statistic 1.13710
Variable Coeff Std Error T-Stat
Signif
11 Constant -23.02 6.316 -3.644
0.004512 ADVERT 2.28 0.198 11.500
0.0000
15
b) Linear Regression
Salesf(Competition)-Eq.10-3---------------------
---------------------------- 1 Dependent
Variable SALES 2 Usable Observations 12 Degs
of Freedom 10 3 R Bar2
-0.050 4 Std Deviation of Dependent
Variable 18.123 5 Standard Error of Estimate
18.574 6 Sum of Squared Residuals
3449.780 7 Regression F(1,10)
0.472 8 Significance Level of F
0.5076 9 Durbin-Watson Statistic
0.37710 Variable Coeff Std
Error T-Stat Signif
11 Constant 37.3372
15.960 2.339 0.041412 COMP 0.4767
0.694 0.687 0.5076
16
c) Mult Regression Salesf(Adver.
Comp.)-Eq.10-4-----------------------------------
-------------- 1 Dependent Variable SALES 2
Usable Observations 12 Degs of Freedom 9 3
R Bar2 0.9730 4
Std Deviation of Dependent Variable 18.1225 5
Standard Error of Estimate 2.978 6
Sum of Squared Residuals 79.803 7
Regression F(2,9) 199.2155 8
Significance Level of F 0.00000004 9
Durbin-Watson Statistic 1.77110
Variable Coeff Std Error T-Stat
Signif
11 Constant -18.7958 3.8520 -4.880
0.000912 ADVERT 2.5248 0.1295 19.495
0.000013 COMP -0.5449 0.1230 -4.432
0.0016-------------------------------------------
------
17
Multiple Coefficient of Determination
- R2 Expl Variance Unexp Var.
Syx2R2 ------------------1 -
---------------1- ---- Total Variance
Total Var. Sy2Partial Regression
Coefficients Y -18.80 2.52530 - .545X2 e
Y -18.80 75.75 -
.545X2 e 56.86 - .545X2 e
(10-5)
18
Figure 10-2 Deviations About a
Plane or HyperspaceDescribing The Regression
PlaneFigure 10-3 Regress. Plane for Equation
10-3.Figure 10-4 Reg Lines on the Reg
PlaneFigure 10-5 The Multiple Regression
Modeling Process
19
MULTIPLE REGRESSION MODELING-PLOTSRes.
Vs Included Indep. Vars. Detects
heteroscedasticity Misspecification (e.g.,
Nlin)Res. Vs Excluded Indep Vars. Detects
variable to be included Misspecification (Nlin).

20
Res. Vs Y. Detects serial correlation,
heteroscedasticity,misspecifications
Residualst Vs Residualst-1. Detects serial
correlationOut of Sample Projections. Detects
unreasonable forecasts.
21
COLLINEARITY AMONG VARIABLESWhat is the
problem? Consider that some form of Linear
Transformation of X2 and X3 perfectly defines X1
X1 a b2X2 b3X3with
Syx0, R2 1, and r1231 Thus, when an attempt
is made to fit the following relationship, a
solution is not possible.
22
MULTICOLLINEARITYHighly Related
Independent Variables May or May not be a
ProblemIf A Problem Coefficient be wrongAlso
its standard error is underestimated
Syx Sb1
---------------- (10-6)
?x2(1 - r122) With r121, Impossible to fit
unique model because of the redundancy of
variables.
23
MultiCollinearity Problems (MCP) May
not be evident to the analyst Yields the wrong
sign or insignificant t-values Avoid MCPs
ByGood theoryLarge sample sizes Good
diagnostic proceduresSometimes MCP are simply an
artifact of the sample
24
DETECTING? Insignificant/Incorrect
regression coefficients? Some strange regression
results from MCP ? Assume correlation between X1
and X2 is high? Each is highly correlated with
Y? Often one regression coefficient is negative
despite the positive relationship ? Often
one variable is highly significant the other
not? Often the sum of the regression
coefficients equals true, single variable
regression coefficient.
25
Y a b1X1 b2X2
b3X3 eWhen Perfect Collinearity the
estimation procedure aborts. Often With
Dichotomous Variable ---------------------------
---------------------- t Yt d1
d2 d3 d4 1 10
1 0 0 0 2 20
0 1 0 0 3 30
0 0 1 0 4 5
0 0 0 1
-------------------------------------------------

26
Thus, d1 1 - d2 - d3
- d4? Solution is impossible. ? Avoid-always
defining one-less variable? The last var. is
part of constant ? Dummy vars. are studied here
later
27
Solutions to Multicollinearity
Problems1) With redundant measures delete the
redundant variable. Good theory precludes
most redundant variables.2) Some MCP are an
artifact of a specific sample. Then
additional obs. may eliminate the problem.
3) MCP from flawed theories. When vars.
represent different dimensions of an
influence then they might be combined using
factor analysis.
28
4) When MCP is caused by a unique
sample use ridge regression.5) When
Theory dictates that both variables should be
included, then include them.While MCP affects
regression coefficients and their
interpretability, it might not alter the
predictive power of the regression model. That
is, the overall relationship may still be useful
in predictive power, this being confirmed by a
low standard error of estimate and high F-value.
To better understand this, consider the example
below.
29
An Example of MCPs (MULT.DAT) Table
10-3. Correlation Matrix ------------------------
------------------- X1 X2 X3
X4 Y X1 1.0000 -0.1067 0.1821 0.9998
0.4622 X2 -0.1067 1.0000 0.1031 -0.1053
0.7479 X3 0.1821 0.1031 1.0000 0.1830
0.5334 X4 0.9998 -0.1053 0.1830 1.0000
0.4638 Y 0.4622 0.7479 0.5334 0.4638
1.0000 ------------------------------------------
-
30
Table 10-4. Models Illustrating
Multicollinearity Problems ---------------------
---------------------------- X1 X2 X3
X4 R2 F-value Syx t-values under
each coefficient)(significance)
-------------------------------------------------
M1 9.16 6.06 76.51 162.2
2166.5 (14.3) (9.4)
(.0000)M2 14.82 9.96 4.84 98.51 2188.9
544.9 (37.9)(61.26)(29.33)
(.0000)M3 9.95 4.83 14.83 98.53 2217.0
541.4 (61.61)(29.47)(38.17)
(.0000)M4 -7.07 9.94 4.83 21.89 98.52 1648.3
543.8 (-.38)(61.18)(29.30)(1.17)
(.0000)------------------------------------------
-------
31
Partial F-test for
Including Variables DETERMINING IF VARS. SHOULD
BE IN A RELATIONSHIP TEST WHETHER M-VARIABLES
SHOULD BE INCLUDED (SSER -
SSEU)/m Fcalculated --------------------
(10-7) SSEU/(n-k-1)
32
where SSEU Sum of Squared
Errors with all variables in the
relationship, called the
unrestricted SSE SSER Sum of Sqed Errors with
m vars. excluded, called the
restricted SSE k-1 Total no. of
unrestricted indep. variables
m Number of restricted independent
variables a Chosen level of sign.,
typically .01 or .05
33
This test is used as follows1)
Estimate a full, unrestricted k-var. model
Capture the SSEU,2) Estimate a partial,
restricted model, k-m var. Capture the
SSER.3) Calculate F using eq. 10-6 Compare to
F-table with df of (i.e., m, n-K-1) and alpha
value, that is Fm,n-k-1,a.
34
4) If F-cal gtF-table, then SSER is
significantly greater than the SSEU.
Denotes that unexpl. Var. Res. gt unexpl. Var.
Unres. If F-cal lt F-table then SSER SSEu
thus no significant additional explained
variance from unrestricted model.
35
Again, If F-cal. gt F-table then
SSER gt SSEu , there is additional explained
variance from the unrestricted model.Consider
Big City Bookstore W and W/O Competition
(SSER - SSEU) / m F-cal
---------------------- SSEU /
(n-K-1) (253.9 - 79.8)/1
------------------- 19.64 (10-7a)
79.8/(12-2-1)
36
F-cal19.64 gtF-tableFm,n-K-1,?F1,9,?
.055.12 F-cal 19.64 gt F-table F1,9, ?
.01 10.56 We infer include COMP. This is a
powerful test.
37
SERIAL CORRELATION PROBLEMS An
Assumption of OLS - residuals are independent.
That is, ACF(k) 0 for all k gt 0When et have
ACF(k) 0 then there may be a deficiency in
model/estimationConsider Table 10-2a), b), and
c).
38
Serial Correlation denotes the
following may be incorrectR2, Syx, Sb,
b-t-valuesFirst order serial correlation
denotes Yt a bXt ?et-1 et
(10-8)where r is rho, the first-order
coefficient.In ARIMA terms ? is actually q1
39
How to estimate r? One of Several
Iterative Processes-Including Cochrane-Orcutt
Iterative Least Squares (COILS), Hildreth-Lu
method, and Prais-Winston methods. We
Illustrate the COILS Method COILS Given
Yt a bXt ?et-1 et
(10-9)
40
Therefore from et-1 Yt-1 -Y t-1
?et-1?(Yt-1-Yt-1) ?(Yt-1-(abXt-1
?et-2et-1)) (10-10)substituting equation
10-10 into 10-9 yields YtabXt?(Yt-1-(abX
t-1?et-2et-1))et expanding and combining a's
into a new term
41
Yt a bXt ?Yt-1 - ?a
?bXt et Yt - ?Yt-1 a bXt -
?bXt-1 et (10-11)reintroducing backshift
operator (1-B)Yt (Yt-Yt-1)
and therefore (1- ?B)Yt
(Yt- ?Yt-1)therefore equation 10-11 can be
simplified to (1- ?B)Yt a b(1- ?B)Xt
et (10-12)
42
This is estimated iteratively by trial
and error using different values of r , called
the Cochrane-Orcutt Iterative Least Squares
(COILS) procedure. COILS can be used with OLS
Software1) Run OLS to determine first r (i.e.,
ACF(1) of et ).

43
2) Using ? transform Yt and Xt to
Yt and Xt Yt Yt - ?Yt-1 (1- ?B)
Yt Xt Xt - ?Xt-1 (1- ?B) Xt 3) Save
these new variables for use in Yt a
b Xt et (10-13)(We lose one
observation in backshifting. The
Prais-Winston method does not.)
44
4) Estimate a and b using OLS in Eq.
10-11 5) Iteratively Search for ? with MIN(SSE)
6) Using this r, use coef. of eq. 10-13 in eq.
10-8 However, remember that the a
a (1- ?)aFigures 10-5 and
10-6 illustrate Xt and Yt
45
Table 10-5. OLS Between Y and X,
AR1DAT.DAT---------------------------------------
----------Usable Observations 100 Degrees
ofFreedom 98R Bar2
0.5924Std Error of Dependent Variable
2.898Standard Error of Estimate
1.850Sum of Squared Residuals
335.476Regression F(1,98)
144.895Significance Level of F
0.00000000Durbin-Watson Statistic
0.905Q(25)
61.009Significance Level of Q
0.00008 Variable Coeff Std Error T-Stat
Signif
1. Constant 79.894 9.899 8.071
0.000000002. X 0.681 0.057 12.037
0.00000000---------------------------------------
----------
46
Table 10-6. ACFs of et for
OLS of Table 10-5.-------------------------------
------------------ 1 0.547 0.239 0.242
0.147 0.084 0.049 7 0.005 -0.003 -0.025
-0.141 -0.103 0.001
Approx.
2SeACF 2/(100).5 .20----------------------
--------------------------- Using the ACF(1)
of .547 yields Yt yt - .55Yt-1
Xt xt - .55Yt-1Regressing these
two variables yields Table 10-7.
47
Table 10-7. Y f(X) for
r.55--------------------------------------------
-----Dependent Variable Y-Estimation by Least
SquaresUsable Obs. 99 Degs. of F.
97R Bar2
0.456 Std Error of Dependent Variable
2.0089 Standard Error of Estimate
1.4823 Sum of Squared Residuals
213.145 Regression F(1,97)
82.99 Significance Level of F
0.00000000Durbin-Watson Statistic
1.637 Q(24)
22.958 Significance Level of Q
0.5223 Variable Coeff
Std Error T-Stat Signif
1. Constant 49.731
4.3745 11.368 0.000000002. X 0.506
0.0555 9.110 0.00000000---------------------
----------------------------
48
Now, let's try r.45 and r.65
Yt yt - .45Yt-1 and
Xt xt - .45Yt-1Table 10-8. Y
f(X) for r.45---------------------------------
---------------- Dependent Variable
Y-Estimation by Least SquaresUsable Obs 99
Degrees of Freedom 97R Bar2
0.483 Standard Error of
Estimate 1.519 Sum of
Squared Residuals 223.879
Regression F(1,97) 92.44
Significance Level of F
0.00000000Durbin-Watson Statistic
1.478 Q(24)
26.128 Significance Level of Q
0.34668 Variable Coeff Std Error
T-Stat Signif
1. Constant 57.403 5.4164
10.598 0.000000002. X 0.541 0.0563
9.615 0.00000000-------------------------------
------------------ This is worse than r .55
49
Consider the r in the opposite
direction, r .65 Yt yt -
.65Yt-1 and Xt
xt - .65Yt-1Table 10-9. Y f(X) for
r.65--------------------------------------------
----- Dependent Variable Y-Estimation by Least
SquaresUsable Obs 99 Degrees of
Freedom 97R Bar2
0.432 Standard Error of Estimate
1.465 Sum of Squared Residuals
208.201 Regression F(1,97)
75.52 Significance Level of F
0.00000000Durbin-Watson Statistic
1.795 Q(24)
23.328 Significance Level
of Q 0.5005 Variable
Coeff Std Error T-Stat Signif
1. Constant
40.549 3.353 12.09 0.000000002. X
0.476 0.055 8.69 0.00000000-------------
------------------------------------
50
Table 10-10. Iterations of rho to
Minimum SSE.-------------------------------------
------------ rho SSE
D-W Statistic.00 535.5
.9053.45 223.88
1.478 .55 213.145
1.637.65 208.20 1.795.75
209.79 1.9331.85
218.626 2.033.95
235.22 2.082------------------------
------------------------- denotes optimal
value of r in manual search.
51
Forecasting With Serially Correlated
ErrorsYt a bXt r et-1 et
Yt 40.55/(1- .65) .476Xt .65et-1 et
Yt 115.85 .476Xt .65et-1 et
(10-14)
52
Yt made at the end of period
t-1 Yt 115.85 .476Xt .65et-1
Yt1 made at the end of period t-1
Yt1115.85 .476Xt1 .65(0) (10-15)where
et-1 is unknown in period t1. Cochrane-Orcutt
Iterative Least Squares (COILS)
53
Table 10-11. Y f (X)
COILS--------------------------------------------
----- Usable Obs 99 Degrees of Freedom
96R Bar2
0.744 Std Error of Dependent Variable
2.910 Standard Error of Estimate
1.472 Sum of Squared Residuals
207.954 Durbin-Watson Statistic
1.835 Q(24)
24.037 Significance Level of Q
0.4018 Variable Coeff
Std Error T-Stat Signif
1. Constant 117.105
9.592 12.208 0.000000002. Xt 0.468
0.055 8.550 0.00000000
3. RHO(r)
0.677 0.077 8.815 0.00000000---------------
----------------------------------
54
Because ? is so high, only a
fraction of the explained variance is
attributed to Xt. This R2 and RSE are
indicative of one-period forecast. After one
period, the influence of ? declines to
zero,The RSE (Standard Error of Estimate) for
Ytm for mgt1 RSE will be higher than for K1.

55
REVIEWING COILSOLS
Yt 79.894 .681Xt et RSE
1.850 DW0.905Correct Coefficients from
COILS Yt 117.105 .468Xt
et RSE 1.472 DW1.835Figures 10-7 and
10-8 Here
56
Table 10-12. Y f(X) by OLS,
ARDAT.DAT----------------------------------------
---------Usable Obs 100 Degrees of
Freedom 98R Bar2
0.368 Std Error of Dependent Variable
1.644 Standard Error of Estimate
1.306 Sum of Squared
Residuals 167.243 Regression
F(1,98) 58.70
Significance Level of F
0.00000000Durbin-Watson Statistic
0.211 Q(25)
310.561 Significance Level of Q
0.00000000 Variable Coeff Std Error
T-Stat Signif
1. Constant 192.602 12.077
15.948 0.000000002. Xt -0.907 0.118
-7.661 0.00000000-------------------------------
------------------
57
Table 10-13. Yf(X)-Estimation by
COILS--------------------------------------------
----- Usable Obs 99 Degrees of Freedom
96R Bar2
0.910Std Error of Dependent Variable
1.652 Standard Error of Estimate
0.497 Sum of Squared Residuals
23.6708 Durbin-Watson Statistic
2.012 Q(24)
25.823 Significance Level of Q
0.30927 Variable Coeff Std
Error T-Stat Signif
1. Constant 114.298
12.331 9.269 0.000000002. Xt -0.136
0.120 -1.133 0.25960000
3. RHO(r)
0.952 0.032 29.582 0.00000000---------------
----------------------------------
58
This was generated using a random
number generator X0 100 Y0
100Xt Xt-1 (1.5 - (RAN1 RAN2 RAN3))Yt
Yt-1 (1.5 - (RAN4 RAN5 RAN6))
Write a Comment
User Comments (0)
About PowerShow.com