Basic properties of Fourier Transforms - PowerPoint PPT Presentation

About This Presentation
Title:

Basic properties of Fourier Transforms

Description:

C(w) = - T(t) exp(-iwt) dt. T(t) = (1/2p) - C(w) exp(iwt) dw. Discrete transforms ... is just the 'Riemann Sum' approximation to the integral transform, with ... – PowerPoint PPT presentation

Number of Views:1008
Avg rating:3.0/5.0
Slides: 48
Provided by: billm7
Category:

less

Transcript and Presenter's Notes

Title: Basic properties of Fourier Transforms


1
  • Lecture 16
  • Basic properties of Fourier Transforms

2
MatLab Code
  • setup
  • N256
  • dt1.0
  • tmaxdt(N-1)
  • tdt0N-1
  • fmax1/(2.0dt)
  • dffmax/(N/2)
  • fdf0N/2,-N/21-1'
  • dw2pidf
  • wdw0N/2,-N/21-1'
  • a sample function, p(t)
  • w0 2pifmax/10
  • p sin(w0t).exp(-0.25w0t)
  • ptfft(p) fourier transform
  • prifft(pt) inverse transform

3
p(t)
t
ifft(fft(p))
t
4
1 Relationship to integral transforms
  • Integral transforms
  • C(w) ?-?? T(t) exp(-iwt) dt
  • T(t) (1/2p) ?-?? C(w) exp(iwt) dw
  • Discrete transforms
  • Ck Sn-N/2N/2 Tn exp(-2pikn/N ) with k-½N, ,
    ½N
  • Tn N-1Sk-N/2N/2 Ck exp(2pikn/N ) with n-½N,
    , ½N
  • (this agrees with definition in MatLab HELP)

5
  • wk kDw and tn nDt and Dw 2p/(NDt)
  • so DwDt 2p/N
  • Ck C(wk) ?-?? T(t) exp(-iwkt) dt
  • ? Dt Sn-N/2N/2 T(tn) exp(-iwktn)
  • Dt Sn-N/2N/2 Tn exp(-i kDw nDt)
  • Dt Sn-N/2N/2 Tn exp(-2pi kn / N )

So forward integral transform is Dt times
discrete forward transform
6
  • wk kDw and tn nDt and Dw 2p/(NDt)
  • so DwDt2p/N and Dw/2p 1/(NDt)
  • T(tn) (1/2p) ?-?? C(w) exp(iwtn) dw
  • ? (Dw/2p) Sk-N/2N/2 C(wk) exp(iwktn)
  • (1/Dt) N-1 Sk-N/2N/2 Ck exp(i kDw nDt)
  • (1/Dt) N-1 Sk-N/2N/2 Ck exp(2pi kn / N )

So inverse integral transform is 1/Dt times
inverse discrete transform
7
So
  • Except for a normalization factor of Dt,
  • The discrete transform is just the Riemann Sum
    approximation to the integral transform, with
    particular choice DwDt2p/N
  • Properties of the integral transform carry over
    to the discrete transform (well, more-or-less)

8
Error Estimates for the DFT
  • Assume uncorrelated, normally-distributed data,
    dnTn, with variance sd2
  • The matrix G in Gmd is GnkN-1 exp(2pikn/N )
  • The problem Gmd is linear, so the unknowns,
    mkCk, (the coefficients of the complex
    exponentials) are also normally-distributed.
  • Since exponentials are orthogonal, GHGN-1I is
    diagonal
  • and Cm sd2 GHG-1 N-1sd2I is diagonal, too
  • Apportioning variance equally between real and
    imaginary parts of Cm, each has variance s2
    N-1sd2/2.
  • The spectrum sm2 Crm2 Cim2 is the sum of two
    uncorrelated, normally distributed random
    variables and is thus c22-distributed.
  • The 95 value of c22 is about 5.9, so that to be
    significant, a peak must exceed 5.9N-1sd2/2

9
example
  • f(t) exp(-a2t2)
  • f(w) ?-?? exp(-a2t2) exp(-iwt) dt
  • 2 ?0? exp(-a2t2) cos(wt) dt
  • ?p exp( -w2/4a2 ) / a
  • See integral 679 of CRC Math Tables
  • Note, by the way, that the Fourier transform of a
    Gaussian is a Gaussian Furthermore, the wider in
    t, the narrower in w.

10
Dt fft( exp(-a2t2) ) with a0.05
w
?p exp( -w2/4a2 ) / a with a0.05
w
11
2 area under T(t)
  • C(w0) is the area under T(t)

area
T(t)
0
12
  • C(w) ?-?? T(t) exp(-iwt) dt
  • C(w0)
  • ?-?? T(t) exp(0) dt
  • ?-?? T(t) dt area

13
area dt ? sum(p) 18.2245
t
area Dt ? real(fft(p)) 18.2245
t
14
3 Time shift
  • Multiplying C(w) by
  • exp(-iwt0)
  • shifts the timeseries T(t) by t0.

T(t)
T(t-t0)
t
t0
0
0
15
  • C(w) ?-?? T(t) exp(-iwt) dt
  • Transform(shifted)
  • ?-?? T(t-t0) exp(-iwt) dt
  • ?-?? T(t) exp-iw(tt0) dt
  • exp(-iwt0) ?-?? T(t) exp(-iwt) dt
  • exp(-iwt0) Transform(unshifted)

t t-t0 so ttt0 and dtdt and t?? as t??
16
p(t)
t
ifft(exp(-iwt0)?fft(p(t))) with t050
t
17
4 derivative
  • Multiplying C(w) by
  • iw
  • Gives the transform of dT/dt

18
  • transform(dT/dt)
  • ?-?? dT/dt exp(-iwt) dt
  • T exp(iwt) -??
  • iw ?-?? T exp(iwt) dt
  • -iw transform(T)

Integration by parts ? u dv uv - ? v du u
exp(iwt) dv(dT/dt) dt du -iw exp(-iwt) dt v
?dv T
assuming T exp(iwt) -?? 0
19
p(t)
dp/dt
ifft( iw fft(p))
20
5 integral
  • Dividing C(w) by
  • iw
  • Gives the transform of ? T dt
  • but note that you must set the zero-frequency
    element manually, since 1/w is undefined at w0.
    Furthermore, this process is not very stable,
    since 1/w can be very large for small ws.

21
p(t)
t
Dt?cumsum(p)
t
a bit of drift, presumably due to round off error
ifft(fft(p)/(iw))
t
22
6 convolution
  • The transform of
  • the convolution of two timeseries
  • is the product of their
  • transforms

23
  • transform( f(t)g(t) )
  • ?-?? ?-?? f(t-t) g(t) dt exp(iwt) dt
  • ?-?? g(t) ?-?? f(t-t) exp(iwt) dt dt
  • ?-?? g(t) ?-?? f(t) expiw(tt) dt dt
  • ?-?? g(t) exp(iwt) dt ?-?? f(t) exp(iwt) dt
  • transform(g(t)) transform(f(t))

tt-t so ttt dt dt
24
f(t)
g(t)
t
conv(g,f)
t
ifft(fft(g)?fft(f))
t
25
7 FFT of a spike at t0 is a constant
  • C(w) ?-?? d(t) exp(-iwt) dt exp(0) 1

26
p(t) is a spike at t00
t
real(fft(p))
imag(fft(p))
w
27
7 FFT of a spike at tt0 is sinusoidal
  • C(w) ?-?? d(t-t0) exp(-iwt) dt exp(-iwt0)
  • cos(wt0) - i sin(wt0)

28
p(t) is a spike at t05
t
5
real(fft(p))cos(wt0)
imag(fft(p))sin(wt0)
w
29
8 FFT of a sinusoid cos(w1t) is a pair of spikes
at ww1
  • Note rule ?-?? exp(-iw1t) exp(iw2t) dt
    d(w1-w2)
  • cos(w1t) ½ exp(iw1t) exp(-iw1t)
  • ?-?? cos(w1t) exp(-iwt) dt
  • ½ ?-?? exp(iw1t) exp(-iwt) dt ½ ?-??
    exp(iw1t) exp(-iwt) dt
  • ½ d(w-w1) d(ww1)

30
p(t)cos(w1t)
t
real(fft(p))
imag(fft(p))0
w
w1
31
Aliasingthe tendency in a digital world for
high frequencies to look like low frequencies
32
MatLab Script to evaluate cosines at ever
increasing frequency
  • L 0 make plots in groups of 10 starting at
    frequency L1
  • for k 110
  • w1 (Lk)dw
  • pcos(w1t)
  • subplot(10,1,k)
  • plot(t,p,'b')
  • hold on
  • axis( 0, tmax, -1.5, 1.5 )
  • end

33
cos(kDwt)
k1
k10
t
34
same!
cos(kDwt)
k11
k16
nyquist
k21
t
35
cos(kDwt)
k21
k31
frequencies seem to be getting lower!
t
36
cos(kDwt)
k31
k41
but now higher again!
t
37
in a digital world we have chosen DwDt 2p/N
  • sin(wntk) sin(kDwnDt) sin(knDwDt)
    sin(2pkn/N)
  • cos(wntk) cos(kDwnDt) cos(knDwDt)
    cos(2pkn/N)
  • let mnN
  • sin(wmtk) sink(nN)DwDt sin2pk(nN)/N
  • cos(2pkn/N) sin(2pk) sin(2pkn/N) cos(2pk)
  • cos(wmtk) cosk(nN)DwDt cos2pk(nN)/N
  • cos(2pkn/N) cos(2pk) - sin(2pkn/N) sin(2pk)
  • but sin(2pk)0 and cos(2pk)1 for all integers k,
    so
  • sin(wmtk)sin(wntk) and cos(wmtk)cos(wntk)

38
in a digital world wnN wn andsince time
and frequency play symmetrical roles in
exp(-iwt) tkN tk
39
Example cos(w0t) with w0wny/20 sampled with
frequency w0wny/32
40
Now connect the dots the resulting function has a
lower frequency
41
wnN wn let n-m, then w-m wN-m
42
This is why the fourier coefficientsof negative
frequenciesare placed at the high frequency
end of the transform vectorthey are the high
frequency coefficients
43
lets reconsider the example where we computed the
Fourier Transform ofp(t) exp(-a2t2)this
function is non-zero at negative times
p(t)
0
t
44
you must not just leave out the values of the
function at negative timesyoud be leaving out
half the informationinstead, you must wrap them
to large times using the rule t-m tN-m
45
so you must put the negative values at the right
and end of the vector, p
  • N256
  • dt0.5
  • tmaxdt(N/2)
  • tmindt(-N/21)
  • tdt0N/2,-N/21-1' note put negative
    times on the end ...
  • fmax1/(2.0dt)
  • dffmax/(N/2)
  • fdf0N/2,-N/21-1'
  • dw2pidf
  • wdw0N/2,-N/21-1'
  • a0.05
  • p exp( -(at).2 )
  • ptfft(p)

p(t)
0
t
p(t)
0
t
t
46
Remember the Time shift ?
  • Multiplying C(w) by exp(-iwt0) shifts the
    timeseries T(t) by t0.
  • What if we try to shift it by more than the
    length of the time-series?
  • It just wraps around

47
with N256, trying to shift it 280Dt just shifts
it 280-25624
24
Write a Comment
User Comments (0)
About PowerShow.com