Metabolism - PowerPoint PPT Presentation

1 / 41
About This Presentation
Title:

Metabolism

Description:

2. Use energy to synthesize cellular compounds from CO2 ... 3. Ferment glucose to ethanol, acetic acid, succinic acid . . . Anaerobic Chemoautotrophs ... – PowerPoint PPT presentation

Number of Views:187
Avg rating:3.0/5.0
Slides: 42
Provided by: REB
Category:

less

Transcript and Presenter's Notes

Title: Metabolism


1
Metabolism
  • Nutrition
  • 2. Respiration
  • 3. Winogradsky Column

2
Nutrition
  • 1. Photoautotrophs
  • 2. Chemoautotrophs
  • 3. Photoheterotrophs
  • 4. Chemoheterotrophs

3
Photoautotrophs
  • 1. Obtain energy from sunlight
  • 2. Use energy to synthesize cellular compounds
    from CO2
  • 3. Plants, algae, cyanobacteria produce O2
  • 4. Green sulfur purple sulfur bacteria
    anoxygenic

4
Chemoautotrophs
  • 1. Obtain energy from oxidation of inorganic or
    organic compounds
  • 2. Use energy to synthesize cellular compounds
    from CO2
  • 3. Sulfur oxidizing nitrogen oxidizing bacteria

5
Photoheterotrophs
  • 1. Obtain energy from sunlight
  • 2. Use energy to synthesize cellular compounds
    from organic compounds
  • 3. Purple nonsulfur bacteria, sheathed bacteria

6
Chemoheterotrophs
  • 1. Obtain energy from oxidation of inorganic or
    organic compounds
  • 2. Use energy to synthesize cellular compounds
    from organic compounds
  • 3. Animals, fungi, glucose ferment bacteria,
    sulfur reducing bacteria

7
Respiration
  • 1. External- breathing, movement of O2 into CO2
    out of organism
  • 2. Internal- cellular, exothermic breakdown of
    molecule to harvest energy
  • 3. Aerobic, anaerobic, fermentation

8
Aerobic Respiration
  • 1. Complete oxidation of inorganic or organic
    molecules to harvest their energy
  • 2. Inorganic molecules
  • 3. Organic molecules

9
Inorganic Molecules
  • 1. Hydrogen sulfide oxidizing bacteria-
  • 2H2S 5O2 g 2SO4-2 2H2O E
  • 2. Ammonium oxidizing bacteria-
  • 2NH4 5O2 g 2NO3- 4H2O E

10
Organic Molecules
  • 1. Some bacteria mitochondria of eukaryotes
    oxidize glucose to CO2
  • C6H12O6 6O2 g 6CO2 6H2O
  • 3. Methylocystis sp other bacteria oxidize
    methane to carbon dioxide
  • CH4 2O2 g CO2 2H2O

11
Eukaryote Respiration
  • 1. Glycolysis
  • 2. Transition Reaction
  • 3. Citric Acid Cycle
  • 4. Electron Transport System (ETS)

12
Glycolysis 1
  • 1. Occurs in cytoplasm
  • 2. Reactants- C6H12O6 2NAD 2ATP 4ADP
    2PO4-3
  • 3. Products- 2C3H4O3 2NADH 4ATP
  • 4. C3H4O3 to transition rxn, NADH to ETS, ATP to
    cytoplasm

13
Glycolysis 2
  • 1. Oxygen independent, anaerobic
  • 2. If O2 present, proceeds to mitochondria
  • 3. If O2 absent, proceeds to
  • fermentation
  • C6H12O6 2ATP g 2C3H4O3 4ATP
  • Pyruvic acid

14
Mitochondrion Description
  • 1. Bilayer membrane with intermembrane space,
    1-5mm
  • 2. Cristae- folds of inner membrane project into
    matrix, ETS
  • 3. Matrix- innermost compartment filled with
    gel-like fluid, transition rxn citric acid cycle

15
Mitochondrion Structure
16
Transition Reaction
  • 1. Occurs in mitochondria
  • 2. Reactants- 2C3H4O3 2NAD 2CoA
  • 3. Products- 2acetylCoA 2NADH 2CO2
  • 4. AcetylCoA to citric acid cycle, NADH to ETS,
    CO2 to cytoplasm exits the cell

17
Citric Acid Cycle 1
  • 1. Occurs in mitochondria
  • 2. Reactants- 2acetylCoA 6NAD 2FAD 2ADP
    PO4-3
  • 3. Products- 6NADH 2FADH2 2ATP 4CO2
  • 4. NADH FADH2 to ETS, ATP to cytoplasm, CO2 to
    cytoplasm exits the cell

18
Citric Acid Cycle 2
19
ETS 1
  • 1. Occurs in mitochondria
  • 2. Reactants- 10 NADH 2FADH2 O2
  • 3. Products- 10 NAD 2FAD 32 to 34 ATP H2O
  • 4. NAD to glycolysis, transition rxn, or citric
    acid cycle FAD to citric acid cycle ATP H2O
    to cytoplasm

20
ETS 2
  • 1. Oxidative phosphorylation
  • 2. Mediated by flavins cytochromes
  • 3. Overall rxn
  • FADH2 NADH O2 -gt 34 ATP H2O

21
Glucose to ATP
22
Anaerobic Respiration
  • 1. Complete oxidation of organic compounds to CO2
    or complete oxidation of inorganic compounds
    using oxidizers other than oxygen
  • 2. Desulfovibrio sp oxidize acetic acid to CO2
    using SO4-2
  • C2H4O2 H2SO4 H2O g 2CO2 H2S 3H2O

23
Fermentation 1
  • 1. Incomplete oxidation of organic compound to
    CO2 another organic compound
  • 2. Saccharomyces cerevisiae ferment glucose to
    CO2 ethanol
  • C6H12O6 g 2CO2 2C2H5OH

24
Fermentation 2
  • 1. Alcoholic Fermentation
  • 2. Lactic Acid Fermentation
  • 3. Both produce no ATP but regenerate NAD for
    glycolysis

25
Alcoholic Fermentation
  • 1. In cytoplasm of plant cells and yeast cells
  • 2. Beer and bread yeast
  • C3H4O3 NADH g CO2 C2H5OH NAD

  • Ethanol
  • (Ethyl
    alcohol)

26
Lactic Acid Fermentation
  • 1. In cytoplasm of muscle cells, oxygen debt
  • 2. Sour milk bacteria, yogurt, pasteurization
  • C3H4O3 NADH g C3H6O3 NAD
  • Lactic Acid

27
Prokaryote Metabolism
  • 1. More metabolic pathways than other four
    kingdoms
  • 2. Recycle all mineral elements organic
    compounds required for life
  • 3. Metabolic activities of one group allow
    another group to live
  • 4. M. W. Beijerinck (1851-1931) S. N.
    Winogradsky (1856-1953)- relationships between
    different microbes in mixed communities

28
Winogradsky Column
  • 1. Clear tube, 30cm x 5cm diameter
  • 2. Lower 1/3- lake or river bottom mud plus
    cellulose, Na2SO4, CaCO3
  • 3. Upper 2/3- water from mud source
  • 4. Cap tube and place in sun or full spectrum
    light

29
Winogradsky Column
30
Winogradsky Incubation
  • 1. Two to 3 months
  • 2. Added cellulose promotes rapid microbial
    growth
  • 3. Microbes deplete O2 in sediment water
  • 4. O2 diffusion from air oxygenates top water
    level

31
Winogradsky Levels
  • 1. All organisms initially present in numbers
  • 2. Different microbes multiply occupy different
    levels
  • 3. Levels- specific environmental conditions that
    support specific organisms metabolic pathway

32
Fermentative Chemoheterotrophs
  • 1. Glucose fermenting bacteria, Clostridium sp,
    break dormancy grow with anaerobic conditions
  • 2. Breakdown cellulose to glucose
  • 3. Ferment glucose to ethanol, acetic acid,
    succinic acid . . .

33
Anaerobic Chemoautotrophs
  • 1. Sulfur reducing bacteria, Desulfovibrio sp
  • 2. Oxidize glucose fermentation products to CO2
    using SO4-2 or S2O3-2
  • 3. SO4-2 S2O3-2 reduced to H2S

34
Anaerobic Photoautotrophs
  • 1. Green sulfur purple sulfur bacteria,
    anaerobic photosynthesis
  • 2. Right below water-sediment interface
  • 3. Synthesize glucose from CO2 H2S using light
    energy
  • 6CO2 12H2S g C6H12O6 6H2O 12S

35
Green Sulfur Bacteria
  • 1. Lower level, smaller than purple sulfur
    bacteria
  • 2. Usually deposit sulfur externally
  • 3. Chlorobium sp

36
Purple Sulfur Bacteria
  • 1. Upper level, larger than green sulfur bacteria
  • 2. Deposit sulfur internally
  • 3. Thiocapsa sp

37
Anaerobic Photoheterotrophs
  • 1. Purple nonsulfur bacteria, synthesize cellular
    compounds from organic acids using light
  • 2. Rhodopseudomonas, Rhodospirillum,
    Rhodomicrobium genera
  • 3. Intolerant of H2S, so found above green
    purple sulfur bacteria
  • 4. Intolerant of O2, so when cyanobacteria
    oxygenate water column

38
Aerobic Chemoautotrophs
  • 1. Sulfur oxidizing bacteria
  • 2. Oxidize H2S to SO4-2 for energy
  • 3. Synthesize cellular compounds from CO2
  • 4. Soil aerobic chemoautotrophs oxidize NH4 to
    NO3-

39
Aerobic Photoautotrophs
  • 1. Cyanobacteria synthesize glucose from CO2
    H2O using light energy
  • 2. Like plants algae, but no chloroplasts
  • 3. Only oxygen producing bacteria

40
Aerobic Photoheterotrophs
  • 1. Sheathed bacteria synthesize cellular
    compounds from organic compounds
  • 2. Sheath- rigid tube of protein, polysaccharide,
    lipid
  • 3. Fe(OH)3 gives yellow to rusty color
  • 4. Sheath surrounds chain of bacteria, bacterium
    swim free to form new colonies

41
Return to Lectures Menu
Write a Comment
User Comments (0)
About PowerShow.com