Modelling of static and fatigue failure in wind turbine blades using a parametric blade model - PowerPoint PPT Presentation

About This Presentation
Title:

Modelling of static and fatigue failure in wind turbine blades using a parametric blade model

Description:

Modelling of static and fatigue failure in wind turbine blades using a parametric blade model A G Dutton, M Clarke1, P Bonnet2 Energy Research Unit (ERU) – PowerPoint PPT presentation

Number of Views:468
Avg rating:3.0/5.0
Slides: 29
Provided by: Autho189
Category:

less

Transcript and Presenter's Notes

Title: Modelling of static and fatigue failure in wind turbine blades using a parametric blade model


1
  • Modelling of static and fatigue failure in wind
    turbine blades using a parametric blade model
  • A G Dutton, M Clarke1, P Bonnet2
  • Energy Research Unit (ERU)
  • Rutherford Appleton Laboratory (RAL)
  • Science and Technology Facilities Council (STFC)
  • (now at 1Oxford Brookes University and 2SAMTECH
    Iberica)
  • Presented at EWEC 2010, Warsaw, 23 April 2010

2
Background SUPERGEN Wind
To undertake research to improve the
cost-effective reliability availability of
existing and future large scale wind turbine
systems in the UK
  • Research Themes
  • Baselining wind turbine performance
  • Drive-train loads and monitoring
  • Structural loads and materials
  • Environmental issues

3
Background Blade modelling
  • Which are the best materials?
  • What is the optimum lay-up?
  • What is the best internal structure?
  • What are the size limits for wind turbine blades?
  • What additional stresses do smart control devices
    generate in a blade?
  • How should NDT measurements be interpreted?

Picture credit LM Glasfiber
Picture credit EWEA
4
Parametric blade modelDesign strategy
  • Parametric processing tool for creation and
    running of the underlying FE model
  • Suitable for sensitivity analyses, flexibility,
    documenting, re-usability
  • Python script front end for automation of the
    Abaqus FE package
  • Modular program
  • Realistic load application, including
    quasi-static aerodynamic loading
  • Ultimate strength fatigue analysis
  • Developing dynamic implementation

5
Parametric blade modelGeometry definition
6
Parametric blade modelGeometry definition
7
Parametric blade modelLay-up
8
Parametric blade modelFully distrubuted
aerodynamic load
9
Parametric blade modelVariable mesh density...
... at the push of a button
10
Parametric blade model
11
5 MW (61 m) blade model
  • Basic lay-up information
  • Target mass and stiffness distributions
  • Limitations of lay-up information
  • Overall mass
  • Discretisation of lay-up info
  • Required spar-cap stress profile?
  • Lay-up modification
  • Materials variation
  • Static load case (aerodynamic load distribution)
  • Fatigue lifetime

12
5 MW (61 m) blade modelSpar-cap stress
distribution (smoothed)
13
5 MW (61 m) blade modelMaterials
Material property Baseline UD material High fatigue strength material
E1T (GPa) 39.0 56.3
E1C (GPa) 38.9 -
?12 0.29 0.25
E2T (GPa) 14.1 9.0
E2C (GPa) 14.997 -
?21 0.95036E-01 0.95036E-01
G12 (MPa) 4.24 4.24
Material property Baseline UD material High fatigue strength material
XT (MPa) 776.5 1757
XC (MPa) -521.8 -978
YT (MPa) 54 54
YC (MPa) -165 165
S (MPa) 56.1 135.4
Fatigue Baseline UD High fatigue strength
S-n curve at R0.1 S0 1176 b 9.74 S0 1250 b 10.59
14
5 MW (61 m) blade modelStatic strength skins
and shear web
  • Choice of static failure criteria
  • Tsai-Wu
  • Tsai-Hill
  • Other (user specified)

15
5 MW (61 m) blade modelStatic strength skins
and shear web
  • Choice of static failure criteria
  • Tsai-Wu
  • Tsai-Hill
  • Other (user specified)

16
5 MW (61 m) blade modelStatic strength
bonding paste
  • Cohesive element model
  • Normal stress component
  • Shear stress component
  • Linear up to characteristic value
  • Material softening

17
5 MW (61 m) blade modelFatigue strength
estimation
  • Complex loading
  • Stochastic / semi-deterministic (cyclic) loading
  • Biaxial (triaxial) stress state
  • Fatigue characterisation
  • Predominantly uni-directional materials data
  • Uncertainty in how best to combine different
    stress cycles
  • R-ratio (minimummaximum stress in a load cycle)
  • Combine into constant life diagram

18
5 MW (61 m) blade modelFatigue strength
estimation
Constant life diagram - Linear Goodman diagram
19
5 MW (61 m) blade modelFatigue strength
estimation
Constant life diagram - Multiple R-values diagram
20
5 MW (61 m) blade modelFatigue strength
estimation
Constant life diagram - Multiple R-values diagram
21
5 MW (61 m) blade modelFatigue strength
estimation
  • Complex loading
  • Stochastic / semi-deterministic (cyclic) loading
  • Biaxial (triaxial) stress state
  • Fatigue characterisation
  • Predominantly uni-directional materials data
  • Uncertainty in how best to combine different
    stress cycles
  • R-ratio (minimummaximum stress in a load cycle)
  • Combine into constant life diagram
  • applies to a single material direction
  • How to deal with complex stress states?

22
5 MW (61 m) blade modelBiaxial stress ratio
  • Biaxial stress ratio is the ratio between the two
    largest magnitude principal stress components

23
5 MW (61 m) blade modelFatigue strength
estimation
24
5 MW (61 m) blade modelFatigue lifetime

25
Full scale blade testingThermoelastic stress
analysis
Blade test blade with defects
26
Full scale blade testingThermoelastic stress
analysis
Blade test blade with defects
27
Conclusions
  • Flexible, parametric blade model for assessment
    of alternative materials
  • Simple failure model in blade skin and developing
    damage model in bonding paste implemented
  • Fatigue methodology under development
  • Initial results also available for application to
    full-scale blade testing, control of smart blades
    and interpretation of condition monitoring data
  • Future work planned on dynamic loading
    operation in wakes from upstream turbines
    smart blade devices

28
Acknowledgements
  • EPSRC grant no. EP/D034566/1
  • SUPERGEN Wind Energy Technologies Consortium

For further information please contact geoff.dutt
on_at_stfc.ac.uk
Write a Comment
User Comments (0)
About PowerShow.com