Introduction for PECVD Plasma Enhanced Chemical Vapor Deposition - PowerPoint PPT Presentation

1 / 43
About This Presentation
Title:

Introduction for PECVD Plasma Enhanced Chemical Vapor Deposition

Description:

Introduction for PECVD Plasma Enhanced Chemical Vapor Deposition * thin film deposition steps (a) crystal growth (b) grain growth and (c) grain coalescence (get ... – PowerPoint PPT presentation

Number of Views:4459
Avg rating:3.0/5.0
Slides: 44
Provided by: 6649913
Category:

less

Transcript and Presenter's Notes

Title: Introduction for PECVD Plasma Enhanced Chemical Vapor Deposition


1
Introduction for PECVDPlasma Enhanced Chemical
Vapor Deposition
2
Vacuum level
Under standard atmospheric pressure Pressure 1
atm 760 mmHg 760 torr 1.013 x 105 Pa
(?kg/cm2) 1013 mbar
14.7 psi 7.6 x 105 micron
  • According to the different behavior of the size
    of the gas pressure and gas movement, vacuum
    divided into five levels

Pa torr
Rough vacuum Airflow morphologyViscous flow 1atm102 Pa 7601 torr
Medium vacuum Airflow morphologyTransition flow 10210-1 Pa 110-3torr
High vacuum Airflow morphologyMolecular flow 10-110-5 Pa 10-310-7 torr
Ultra-high vacuum Airflow morphologySingle-molecule movement 10-510-8 Pa 10-710-10 torr
Ultra-high vacuum Airflow morphologySingle-molecule movement less 10-8 Pa less 10-10 torr
3
Mean free path
  • Gas molecules in the movement, each molecule
    before the collision to other molecules, the
    average walking distance is called the gas mean
    free path, usually represented by the symbol ???
    , unit is cm. at room temperature 20 C (The
    higher the temperature, molecular motion faster)

Pressure Mean free path
1 x 10-3 torr 5cm
1 x 10-4 torr 50cm
1 x 10-5 torr 5m
1 x 10-6 torr 50m
1 x 10-7 torr 500m
1 x 10-8 torr 5km
1 x 10-9 torr 50km
1 x 10-10 torr 500km
4
Vacuum pump operating range
Medium vacuum
High vacuum
Rough vacuum
Ultra-high vacuum
Pressure (mbar)
5
Classification of the vacuum gauge
  • (?) Divided according to the measuring method
  • 1. DirectThe size of the direct measurement of
    the gas molecules acting on the wall or membrane
    of the sensing element force, reading is usually
    nothing to do with the gas species, a rough
    vacuum regardless of the often used this way.
  • 2. IndirectCharacteristics of the measuring gas
    in a vacuum, such as thermal conductivity,
    viscosity, etc., to be converted into pressure,
    high vacuum regardless of this approach is
    commonly used in reading and gas type.
  • (?) Divided on the basis of the work principle
  • 1. MechanicalWall or membrane of the sensing
    element to the force acting on a size to
    determine the size of the pressure.
  • 2. ElectronicNumber of different vacuum gas
    molecules caused by the thermal conductivity,
    viscosity, ionizing the measured strength of
    electronic signals converted into the size of the
    pressure.
  • (?) Divided according to the measurement range
  • 1. Rough vacuum 1 atm 102 Pa, Gauge
    U-tube?Gauges Bourdon ?
  • 2. Medium vacuum 10210-1 Pa, Gauge
    thermocouple?Gauges capacitance manometer
  • 3. High? Ultra-high vacuum 10-1 10-10 Pa Gauges
    cold cathode?Gauge ionization

6
(No Transcript)
7
PVD thin film growth mechanism
  • First of all, the atoms reach the substrate must
    have a vertical movement, atoms in order to
    adsorption on a substrate. these atoms in a
    chemical reaction to form a thin film substrate.
    thin film composition atoms in the surface of the
    substrate diffusion movement, this phenomenon is
    known as the adatom Surface Migration. when the
    atoms collide with each other combination of the
    trip atoms, Known as nucleation.
  • Atoms must reach a certain size, the continuous
    stable growth. therefore, the small clusters will
    be inclined to each other polymerization,
    formation of a larger atoms, to cut overall
    energy. Atoms continue to grow will form the
    island. gaps between the nuclear island need
    to fill in order of atomic island junction and
    the formation of the entire continuous film.
    unable to bonding of atoms and the substrate,
    will be taken from the substrate surface
    detachment, to formation of free atoms, this step
    is called the atomic desorption.

8
Sputter (PVD)
9
PVD-Sputtering
10
PVD-Sputtering
  • The frequency of using magnets to scan the film
    thickness can be controlled, scanningmore the
    number of film thickness and the thicker.
  • In general, more suitable for thin film
    deposition conditions high substrate
    temperature, low pressure, clean, smooth and
    non-reaction with the deposited film and the
    lattice size similar substrate.

11
Vacuum evaporation, sputtering and ion deposition
three kinds of PVD method of characteristics.
PVD Evaporation Vacuum evaporation Sputtering Ion deposition
Ions generated heat kinetic heat
Thin film growth rate Can improve ( lt 75 µm/min) Pure metal other than low (Cu1µm/min) Can improve( lt 25 µm/min)
Particle Atoms, ions Atoms, ions Atoms, ions
Deposition uniformity if no gas mix in , and it will be worse good,but the film thickness uneven good,but the film thickness uneven
Deposition of metal YES YES YES
Evaporation alloy YES YES YES
12
Vacuum evaporation, sputtering and ion deposition
three kinds of PVD method of characteristics.
PVD Evaporation Vacuum evaporation Sputtering Ion deposition
Evaporation heat-resistant compounds YES YES YES
Particle energy 0.10.5eV 1100eV 1100eV
The impact of the inert gas ion usually not Yes,or not because of its shape YES
Mixing between the surface and layer usually not YES YES
Heating (external heating) YES usually not Yes and No
Deposition rate 10-9 m/sec 1.671250 0.1716.7 0.5833
13
Vapor deposition, molecular beam epitaxy and sput
tering PVDcharacteristics comparison
Nature of the  method Deposition rate Large-size control Precise composition control Can be deposited materials Manufacturing cost
???? (Evaporation) Slow Poor Less Poor Poor
??????? (MBE) Slow Poor Excellent Poor Poor
??(Sputter) Best Best Best many Excellent
14
Thin Film Deposition
CVD (Chemical Vapor Deposition)
PVD ( Physical Vapor Deposition)
By Pressure APCVD 760 torr LPCVD 10-1
torr PECVD 500 mtorr
By Energy Resistance Heat Re induction Glow
Discharge Photons
By Reactor Type Hot/Cool wall
15
????????????CVD 5 mechanisms
  • (1) Import the main airstream of the reactants
    (laminar flow (?))
  • (2) internal diffusion of reactants
  • (3) Atomic adsorption
  • (4) Surface chemical reaction
  • (5) Resultant outer diffusion and remove

Boundary layer
(6)Chemical reaction
16
Atmospheric pressure chemical vapor
deposition(APCVD)
The so-called atmospheric pressure chemical vapor
deposition method,  as the name implies, is the pr
essure to tap into the atmospheric pressure  CVD
reactor of a deposition, the deposition
rate of this method is very fast (high deposition 
rate),approximately 600-1000 nm / min. Close
to atmospheric pressure(1 atm) the APCVD the opera
ting pressure,  the pressure of
molecular collisions between the high frequency
of  homogeneous nucleation "gas phase
reactions likely to occur, and easy to
produce particles (easily generate particles). APC
VD use in industrial applications are
concentrated in the larger particle
endure the process,  such as the
protection layer (just for to passivation).
17
APCVD Reactor
18
Low-pressure chemical vapor deposition(LPCVD)
Low-pressure chemical vapor deposition during thin
film deposition,  the gas pressure inside the rea
ctor lowered to below about 100 torr. A
chemical vapor deposition reaction. Reaction at
low pressure, the film deposited by
LPCVD method has better step coverage,
but the lower  the frequency of collisions
between gas molecules makes the LPCVD  deposition 
rate is slow compared to APCVD. The deposition rat
e is lower.
19
LPCVD System
20
Plasma enhanced chemical vapor deposition(PECVD)
  • In the CVD reaction, the decomposition of gas
    molecules need to have sufficient excitation
    energy .Plasma enhanced chemical vapor
    deposition 
  • method, the reaction gas in an
    electromagnetic field energy, and a variety
  •   of chemical reactions in the plasma body
    quickly, resulting in a short 
  • period of time to complete the chemical vapor
    deposition.
  • Belongs to the non-equilibrium plasma in the PECVD
    .In the body of such a plasma, the free
    electrons of the absolute temperature is usually
    higher than the average gas temperature of 1-2 cla
    ss times, these high-energy
  •  electron impact gas molecules of the
    reactants, excitation and ionization,
  • resulting in very lively chemical
    properties of free radicals group. Addition ,
  • the ions hit the substrate surface,
    resulting in a more lively surface structure,
  • there by speeding up the chemical
    reaction. In order to reduce the reaction
  • temperature required to reach the lowered
    energy consumption for heating, in
  • PECVD share of the weight in the
    CVD process to gradually become a
  • major thin film deposition tools in
    Taiwan, especially for IC wafer BEOL
  •   metal and dielectric deposition of the plasma
    membrane.

21
Belongs to the non-equilibrium plasma in the
PECVD. In the body of such a plasma, free
electrons of the absolute temperature is usually
higher than the average gas temperature 1-2 class
times,Free Electrons have high temperature
(energy). They will bomb the reactants and gases.
The gases will be ionized. The ionics will be
active to react with other ionics. These
high-energy electron impact reactant gas
molecules, so that excitation and ionization, and
chemical properties of very lively radicals.
Addition, ion bombardment to the substrate
surface, The ionics will also bomb on the
substrate surface. Sometime it help deposition,
but Sometime it is a damage. More lively surface
structure, thereby speeding up the chemical
reaction. In order to reduce the reaction
temperature required to reach the lowered energy
consumption for heating, in PECVD share of the
weight in the CVD process to gradually become a
major thin film deposition tools in Taiwan,
especially for IC wafer BEOL metal and dielectric
deposition of the plasma membrane.
22
Plasma Enhanced CVD System
13.56 MHz/ 60MHz 50-1000W
23
Various comparative advantages and disadvantages
of CVD
Process Advantage Shortcoming Application
APCVD Simple structure of the reactor Fast deposition rate Low temperature process Step coverage of the poor particle pollution Low temperature oxide
LPCVD High-purity Step coverage excellent Can be deposited on large area chips High-temperature process Low deposition rate High-temperature oxide Polysilicon Tungsten, silicide tungsten
PECVD Low temperature process High deposition rate Step coverage Chemical pollution Particle pollution Low-temperature insulator Passivation layer
24
CVD System
25
CVD System
26
Thin Film - PECVD
27
PECVD?Solar Cell ???? a-SiH
PECVD way to the deposition of thin films,
generally have a high hydrogen content in the
case of Hydrogen amount is very a high, because
the Plasma in the H atoms with unsaturated bonds,
not when the deposition statement of Si and N to
form the Si-H and NHkey results. Since H is
easily affected by temperature has been released
(H will be released at a high temperature),
resulting in the instability of the TFT device
characteristics. H in plasma will connected with
unsaturated Si and N to become Si-H and N-H
28
Hydrogen treat for SiNx layer
After the g-of SiNx do an H2, Plasma, change the
surface structure of g-of SiNx, to fill some of
the Dangling Bond, in order to avoid the Channel
with a-Si Defect trap caused by Cell Mobility
lower
29
Preparation and Properties of amorphous silicon
  • Thin film deposition method
  • a-Si and its alloys is the plasma CVD, the heat
    of CVD, reactive sputtering or optical CVD
    method, vapor-phase synthesis method to prepare
    thin films.The use of a-Si solar cell, to the
    plasma of CVD method prepared, it is the first
    production method described, followed by optical
    CVD method, Doping.

30
Plasma CVD method
Materials and gases to stimulate dissociation film
As shown the generated SiHx (x ? 3) response
(neutral and ionic).These reactions are diffusion
to reach 100 to 300.C substrate, on which a
variety of reactions (adsorption, detachment,
pulled out, insert and surface diffusion
process), the formation of a-Si film.
Excitation, Decomposition
Transport
Surface reaction
Film
31
Commercialization of solar cells using the plasma
technology applications
Effect Passivation Antireflection Abosrbers Contacts
Material SiNxH SiO2 SiO2, TiO2, Si3N4 a-SiH, Cu, In, Ga, Se, S,CdTe Al, Ag, NiV, Mo, SbTe, ITO, Ti, Pd, ZnOAl, i-ZnO
Equipment and technology PECVD Sputtering PECVD Sputtering
Equipment and technology Sputtering PECVD Evaporation Evaporation
Equipment and technology Sputtering
32
Applied by different generations of solar cells,
plasma equipment
Solar cell classification Applications of plasma devices Plasma coating membranes 2004 2020
The first generation Silicon type PECVD?Etcher Antireflection film batch coated 93 50
Second-generation Film-type(Silicon?II-VI?III-V) PECVD?PVD Transparent conductive film, the metal electrode, the silicon thin film 7 42
Third-generation Nano, organic, dye PVD?PECVD SiNx/SiOx film?Transparent conductive filmTiO2/Ta2O5?Metal electrodes 0 8
33
Thin film growth
  • Chip film, the initial covered on the wafer
    surface, many gas molecules or other
    child, such as atoms and ions. These
    particles may be because the 
  • chemical reaction, the solid particles, and
    then deposited on the wafer surface or lose
    part of the kinetic energy through a surface
    diffusion 
  • campaign, the wafer surface adsorbed (absorbed) we
    re deposited. According to the order of
    occurrence can be divided into the following
    five steps (a) crystal growth (b) the grain
    growth and (c) grain coalescence 
  • (d) seam Road to fill the (e) The deposition
    film growth.

34
thin film deposition steps
(a) crystal growth (b) grain growth and
(c) grain coalescence (get together) (d) The seam
Road to fill the gap (e) The deposition film growt
h(1) physical adsorption on the wafer
surface adatom(2) adatom back to the gas
phase by absorption of the solution
35
Thin film structure
  • island structure
  • In the deposition, when the atoms or molecules
    are mutually binding capacity than the substrate
    strong island structure, such as metal insulator,
    graphite and other substrates.
  • layer structure
  • As the atoms and the substrate bonding is
    stronger than the others. The first layer
    of coverage completed with the second
    layer of bonding will be weak, such as
    semiconductor thin film of single crystal growth.
  • Stranski-Krastanov(S.K.) structure
  • Do the aforementioned model of an intermediate
    process, the current study such behavior is
    not fully understood, there may
    be disturbance to the growth of layered
    structure due to the binding energy.

36
Residual stress
  • Within the film and the substrate must have the
    existence of residual stress (thermal expansion
    coeff.), residual stress according to
    their form to distinguish can be divided
    into two, divided into the two kinds of tensile
    stress and compressive stress.
  • The film tensile stress of the role, then the film
     - substrate will show a concaveshape
  • Film by the compressive stress of
    the role, then the film - substrate will
    show aconvex shape

(a) Tensile stress
(b) Compressive stress
37
VHF-CVD reactor electrode structure
Its structure for the strip-type electrodes, Howev
er, due to the spacing of theelectrode
structure is very narrow, and therefore will
produce a standing wave effect,
affecting the quality of thin film
growth, the left side of the SignalModulator gener
ated waves phase, the elimination of standing
wave effect, in order to improve the filmdepositio
n quality.
38
Applications of PECVD in TFPV
  • a-SiH film quality related to the experimental
    parameters
  • (1) Substrate temperature (2)SiH4/H2 ratio
    (3)Total gas flow rate (4)RF power density
    (5)Electrode to substrate distance (6) growth
    pressure,
  • To increase the growth rate of a-SiH
    films , some possible problems
  • Increase the power density of the plasma
    power increase free radical production rate,
    but will also enhance the pears bombarded
    by an increase in film stress.
  • Increase the gas pressure the homogenous reaction
    generates more, the powder easily occur, the
    plasma will easily generate porous film.
  • Increase viscosity coefficient of free
    Radicals cause free radical surface
    diffusion will decrease to reduce the decline
    in film quality.

39
Applications of PECVD in TFPV
  • a-SiH thin film deposited by PECVD has lower
    defect density than by sputter due passivation of
    dangling bonds by H atoms

40
Applications of PECVD in TFPV
  • Doped a-SiH thin film
  • Doped a-SiH can be fabricated by mixing PH3 and
    mixing B2H6 or into SiH4/H2 gas in plasma
    deposition process.
  • Conductivity of a-SiH may be varied more than a
    factor of108
  • But doping in a-SiH inevitable leads to
    creation of dangling bonds, higher defects
    density and shorter diffusion length of carriers.

41
Microcrystalline Xicheng film agencies
  • As raw material, SiH4, SiH3 of SiH4 reaction and
    very stable, is generally considered the
    main precursor for the SiH4 there
    is a proportion of about1/1000.
  • Hydrogen atoms from SiH4 and H2, but with SiH4 to
    produce the binding reaction.
  • Of SiH4  H ? H2  SiH3 extinguished, there is
    no hydrogen dilution system,the hydrogen atom is
    almost impossible to reach the substrate surface. 
    To growthe crystal structure must be about
    10 times more hydrogen dilution.

Crystalline deposition of microcrystalline
silicon thin film changes with thethickness
and hydrogen dilution schematic
42
grain boundary
43
Grain size and shape
Write a Comment
User Comments (0)
About PowerShow.com