Title: L.P. Csernai, C. Anderlik, V. Magas, D. Strottman
1- L.P. Csernai, C. Anderlik, V. Magas, D. Strottman
Modelling Relativistic Nuclear Collisions
Multi Module Models
Bergen
Computational Physics Lab.
2Multi Module Modeling
- Initial state - pre-equilibrium Parton
Cascade Coherent Yang-Mills Magas - Local Equilibrium ? Hydro, EoS
- Final Freeze-out Kinetic models, measurables
- If QGP ? Sudden and simultaneous hadronization
and freeze out (indicated by HBT, Strangeness,
Entropy puzzle)
Landau (1953), Milekhin (1958), Cooper Frye
(1974)
3Matching Conditions
- Conservation laws
- Nondecreasing entropy
4INITIAL STATE
5(No Transcript)
6Firestreak Picture
Myers, Gosset, Kapusta, Westfall
7String rope --- Flux tube --- Coherent YM field
8Initial stage Coherent Yang-Mills model
Magas, Csernai, Strottman, NEW2001
9Yo Yo Dynamics
10(No Transcript)
11Expanding string ropes Full energy conservation
12Initial state
3rd flow component
133-Dim Hydro for RHIC (PIC)
143-dim Hydro for RHIC Energies
AuAu ECM65 GeV/nucl. b0.1 bmax As0.08
gt s10 GeV/fm
n / n0 1
e GeV / fm3
.
.
T 0.0 fm/c nmax 8.67 emax32.46 GeV / fm3
Lx,y 1.45 fm Lz0.145 fm
4.4 x 1.3 fm
153-dim Hydro for RHIC Energies
AuAu ECM65 GeV/nucl. b0.1 bmax As0.08
gt s10 GeV/fm
n / n0 1
e GeV / fm3
.
.
T1.9 fm/c nmax 8.66 emax 31.82 GeV / fm3
Lx,y 1.45 fm Lz0.145 fm
163-dim Hydro for RHIC Energies
AuAu ECM65 GeV/nucl. b0.1 bmax As0.08
gt s10 GeV/fm
n / n0 1
e GeV / fm3
.
.
.
T 3.8 fm/c nmax 7.77 emax 27.22 GeV / fm3
Lx,y 1.45 fm Lz0.145 fm
4.4 x 1.3 fm
173-dim Hydro for RHIC Energies
AuAu ECM65 GeV/nucl. b0.1 bmax As0.08
gt s10 GeV/fm
n / n0 1
e GeV / fm3
.
.
T 5.7 fm/c nmax 6.36 emax 26.31 GeV / fm3
Lx,y 1.45 fm Lz0.145 fm
183-dim Hydro for RHIC Energies
AuAu ECM65 GeV/nucl. b0.1 bmax As0.08
gt s10 GeV/fm
n / n0 1
e GeV / fm3
.
.
T 7.6 fm/c nmax 5.22 emax 37.16 GeV / fm3
Lx,y 1.45 fm Lz0.145 fm
193-dim Hydro for RHIC Energies
AuAu ECM65 GeV/nucl. b0.1 bmax As0.08
gt s10 GeV/fm
n / n0 1
e GeV / fm3
.
.
T 9.5 fm/c nmax 4.45 emax 32.86 GeV / fm3
Lx,y 1.45 fm Lz0.145 fm
20Global Flow
Directed Transverse flow
3rd flow component (anti - flow)
X
b
Z
Squeeze out
Elliptic flow
21Third flow component
SPS NA49
22Third flow component / SPS / NA49
233rd flow component and QGP
- Csernai Röhrich Phys.Lett.B458(99)454
observed a 3rd flow component at SPS energies,
not discussed before. - Also observed that in ALL earlier fluid dynamical
calculations with QGP in the EoS there is 3rd
flow comp.
- The effect was absent without QGP.
- In string and RQMD models only peripheral
collision showed the effect (shadowing). - The effect is attributed to a flat (Landau type)
initial condition. - Similarity to elliptic flow.
243rd flow component
Hydro Csernai, HIPAGS93
25A 0.08
11.4 fm / c
26A 0.065
11.4 fm/c
27Freeze out
28Hypersurface
29Cooper-Frye formula
30Consequences of conservation laws
(Space-like Taub 1948, Time-like Csernai
1987)
- Non-decreasing entropy current across front!
31Space-like hypersurface
32Cut Juttner distribution
T(p.ds) f(x,p)
Pre FO velocity
Anderlik et al., Phys.Rev.C59(99)3309
Bugaev, Nucl.Phys.A606(96)559
33Kinetic freeze-out models
- Kinetic approach
- f (x,p) out of equilibrium
- Asymmetry
34Freeze out model with rescattering
Anderlik et al., Phys.Rev.C59388-394,1999
35Freeze out distribution with rescattering
V0
V. Magas, et al., Heavy Ion Phys.9193-216,1999
36P-t distribution (T130 MeV)
V. Magas et al., Phys.Lett.B459(99)33
37CERN