The Electric Dipole Moment of the Neutron revisited - PowerPoint PPT Presentation

About This Presentation
Title:

The Electric Dipole Moment of the Neutron revisited

Description:

The Electric Dipole Moment of the Neutron revisited Schedar Marchetti Motivations: 1 The electric dipole moment (edm) of particles is an important window to CP beyond ... – PowerPoint PPT presentation

Number of Views:128
Avg rating:3.0/5.0
Slides: 16
Provided by: Sche124
Category:

less

Transcript and Presenter's Notes

Title: The Electric Dipole Moment of the Neutron revisited


1
The Electric Dipole Moment ofthe Neutron
revisited
Schedar Marchetti
2
Motivations 1
  • The electric dipole moment (edm) of particles is
    an important window to CP beyond SM in ?F0
    sector
  • In the SM the edms arise from dCKM
    this contribution is much
  • smaller than current exp. limits ( 6 order
    of magnitude)
  • dN lt 6.3 10-26 e cm
  • In Supersymmetric models there are new sources of
    CP from the
  • complex phase of the soft SUSY breaking
    parameters and µ term
  • The presence of new CP is needed to have an
    efficient baryogenesis
  • Unconstrained MSSM 40 phases
  • GUT
    4 allowed phases but only 2
  • mSUGRA
    are physical fA and fµ
  • Flavour Universality
  • Are this phases costrained using the current
    exp. costraints from neutron edms ?

3
Motivations 2
  • Neutron edm SUSY problem
  • naive estimation dN 2(100 )
    sin fA,µ 10-23 e cm
  • Two regions
  • M gt O(TeV) fA,µ O(1)
    Hierarchy Problem
  • M lt O(TeV) fA,µ O(10 2)
    Fine tuning? dCKM O(1)?
  • To go beyond complete one loop analysis
    of neutron edms
  • scan of the parameter space just
    to see what happens varying
  • M in this regions
  • Alternative picture some cancellations
    mechanism beyond the

  • various contributions?

2
GeV
M
Supersymmetric scale
4
Electric Dipole Moment
  • The electric dipole moment of a classical
    distribution of charge is
  • defined as
  • d ?
    d3x x ?(x)
  • The presence of an edm violates CP d
    d
  • d ? d , J ? J Under
    Time Reversal
  • d ? d , J ? J Under
    Parity
  • d ? 0 violate T and P and so CP (CPT
    theorem)
  • In QFT the classical interaction Hint d E
    corresponds to
  • Heff dE ? sµ? ?5 ? Fµ? C7 O7
    (prove that dE d)

spin
J
J
i
2
5
Electric Dipole Moment
  • If we consider strong interacting particle, such
    as atoms and hadrons
  • (e.g. mercury and neutron), other operators
    must take into account
  • Heff C7(µ) O7(µ) C8(µ) O8(µ) CG(µ)
    OG(µ)
  • O7 q sµ? ?5 q Fµ?
    Electric dipole
  • O8 gs q sµ? ?5 ta q Gµ?
    Chromoelectric dipole
  • OG gs fabc Gµ? Gb?? G?s eµ??s
    Gluonic dipole
  • The Weinberg operator OG can be neglected at the
    leading order
  • only O7 and O8 enter in the game

EDM
i
2
i
a
2
1
3
a
c
6
6
Electric Dipole Moment
  • Outline of the calculation Effective
    Theories

Projection of full theory on dipole operators
Matching
MSUSY
Ci Ci(M)
Renormalization group equations
µ
Evolution from matching to hadronic
scale governed by anomalous dimension matrix
Mixing
Operator Matrix Elements
Few informations
?QCD
e.g. naive dimensional analysis, ChPT, QCD Sum
Rules
d
u
1
dN 4C7(µ) C7(µ)
3
µ 2 GeV
7
Electric Dipole Moment
One Loop diagrams
Chargino exchange
Neutralino exchange
Gluino exchange
CP
CP
2
mu

?LR
u
CP
Mass Insertion Approximation
2
L
mu

2
?LR
u

mu

R
8
CP Violation Sources beyond CKM
Quark-Squark sector
Super-CKM




'
'
'
'
uL Vu uL uR Vu uR
uL Vu uL uR Vu uR
L
R
L
R




'
'
'
'
dL Vd dL dR Vd dR
dL Vd dL dR Vd dR
L
R
R
L
Quark mass diagonal

diag
Vu mu Vu mu
L
R
Gauge int. governed by CKM



uL


L2 (uL uR) mu

2

uR
CP F
CP F
CP
2



New source of flavour and CP violation
diag
2
diag
Vu mQ Vu mu ?u ?
(Vu Au Vu - µ cot ß) mu

L
L
L
L
L
2
mu


2
diag
2
mu (Vu Au Vu µ cot ß)
Vu mU Vu mu ?u ?
diag

L
L
R
R
R
CP F
CP F
CP
9
CP Violation Sources beyond CKM
Neutralino sector
Chargino sector






? ( W- , h )
?0 ( B- , W0 , h0 , h0 )
u


d
u
?- ( W-, h- )
d
1
L - (?0)T MN ?0 h.c.
L - (?-)T MC ? h.c.
2
CP
CP
M1 0 -cßswmz sßswmz
0 M2 cßcwmz -sßcwmz
-cßswmz cßcwmz 0 - µ
-cßswmz cßcwmz - µ 0
M2
v2 sß mw
MN
MC
µ
v2 cß mw
CP
CP
diag
diag
MC UT MC V
MN ZT MN Z
10
Electric Dipole Moment
Explicit expression of the supersymmetric
contributions
Gluino exchange
2
as
Im(?LR )
q
Qq A( , )
mg
2
mg


q
q
Qq A ? B
C8
C7
3
2
2

4p
mg
mq

mq

L
R
u
C ? 0, Qd ? 1
C8
Chargino exchange
2
2
2
m?

m?

u
ae
Im(Gi )
(Qu- Qd) C( ) Qd D ( )
u
?
i
i
C7
2
2

m?
2
4p sw
mq

mq

i1
i
L
L
q
C8
Qq ? 1
Neutralino exchange
2
2
2
4
m?

m?

m?

? Im(? j ) D( ) Im(? LR) A( , )
ae
Qq
i
?
q
q
q
i
i
C7 -
2
2
2
2
4p sw
m?

mq

mq

mq

i1
jL,R
i
j
L
R
11
An Exploratory Analysis - 1
  • Switch on a single phase fµ

First Scenario mass parameters above
TeV scale
Parameter range Mi (1000,1500), Au Ad
(1000,1500), mq (1000,1500), µ
(1000,1500), (GeV) fA fA (-p,
p), fµ (-p, p)

u
d
  • positive sign
  • negative sign
  • exp. limit

12
An Exploratory Analysis - 2
Second Scenario mass parameters under
TeV scale
Parameter range Mi (100,150), Au Ad
(100,150), mq (100,150), µ (100,150),
(GeV) fA fA (-p, p), fµ (-p, p)

u
d
  • positive sign
  • negative sign
  • exp. limit

13
An Exploratory Analysis - 3
  • Two independent phase

fA
fA
fA



neglecting terms suppressed by a factor
O( )
mq

2
fA , fµ
MW
  • Gluino contribution seems to depend mainly on fµ
    this might
  • depend strongly on the assumption fA fA

u
d
14
Preliminary Conclusions
  • Two observations
  • 1 Hierarchies gluino gt chargino gtgt
    neutralino
  • 2 Gluino tend to be opposite in sign to chargino
    possibility of a
  • systematic negative interference between the
    two contributions ?
  • in the previous literature the
    sensitivity to this cancellations was
  • limited to more or less limited areas, and
    requiring at least an O(TeV)
  • parameter fine tuning ?

Ibrahim et al. hep-ph/9707409 Pokorski et
al. hep-ph/9906206
15
Improved Analysis (work in progress)
  • This is only a quick look to go more in details
  • The previous choice of parameters is clearly
    inconsistent
  • universal soft breaking at the GUT scale and
    running the parameters
  • down to EW scale
  • Inclusion of the NLO contributions at least for
    the dominant gluino
  • exchange
  • resummation of the
    terms through RGE
  • Possible contribution from Chromoelectric and
    Weinberg operators
  • Hadronic matrix elements beyond naive estimation
  • Another edm could take into the game (e.g.
    electron, mercury)
  • crossing analysis

µ
as
( )
n
as ln
4p
M
Write a Comment
User Comments (0)
About PowerShow.com