Deciding Primality is in P - PowerPoint PPT Presentation

About This Presentation
Title:

Deciding Primality is in P

Description:

Deciding Primality is in P M. Agrawal, N. Kayal, N. Saxena Presentation by Adi Akavia Background Sieve of Eratosthenes 240BC - (n) Fermat s Little Theorem (17th ... – PowerPoint PPT presentation

Number of Views:53
Avg rating:3.0/5.0
Slides: 25
Provided by: ELA90
Category:

less

Transcript and Presenter's Notes

Title: Deciding Primality is in P


1
Deciding Primality is in P
  • M. Agrawal, N. Kayal, N. SaxenaPresentation by
    Adi Akavia

2
Background
  • Sieve of Eratosthenes 240BC -??(n)
  • Fermats Little Theorem (17th century)
  • p is prime, a?0 (mod p) ? ap-1?1 (mod p)
  • (The converse does not hold Carmichael numbers)
  • Polynomial-time algorithms
  • Miller 76 deterministic, assuming Extended
    Riemann Hypothesis.
  • Solovay, Strassen 77 Rabin 80 unconditional,
    but randomized.
  • Goldwasser, Kilian 86 randomized produces
    certificate for primality! (for almost all
    numbers)
  • Atkin 86 Adelman Huang 92 primality
    certificate for all numbers.
  • Adelman, Pomerance, Rumely 83 deterministic
    (log n)O(log log log n)-time.

3
This Paper
  • unconditional, deterministic, polynomial
  • Def (Sophie-Germain primes) primes (p-1)/2 s.t.
    p is also prime.
  • Def r is special with respect to n if
  • r is prime,
  • r-1 has a large prime factor q ?(r2/3) , and
  • qOr(n).
  • Tools
  • simple algebra
  • High density conjecture for primes p s.t.
    (p-1)/2 is Sophie-Germain

Def order n mod r, denoted Or(n), is the
smallest power t s.t. nt?? 1 (mod r).
  • High density Thm for primes p s.t. p-1 has a
    large (?(r2/3)) prime factor. Fou85, BH96

4
This Paper
  • unconditional, deterministic, polynomial
  • Def (Sophie-Germain primes) primes (p-1)/2 s.t.
    p is also prime.
  • Def r is almost Sophie-Germain (ASG) if
  • r is prime,
  • r-1 has a large prime factor q ?(r2/3)
  • Tools
  • simple algebra
  • High density conjecture for primes p s.t.
    (p-1)/2 is Sophie-Germain
  • High density Thm for primes p that are almost
    Sophie-Germain. Fou85, BH96

5
Basic Idea
  • Fact For any a s.t (a,n)?1
  • n is prime ? (x-a)n?xn-a (mod n)
  • n is composite ? (x-a)n?xn-a (mod n)
  • Naive algo Pick an arbitrary a, check if
    (x-a)n?xn-a (mod n)
  • Problem time complexity - ?(n).

6
Basic Idea
  • Idea Pick an arbitrary a, and some polynomial
    xr-1, with r poly log n, check if (x-a)n?xn-a
    (mod xr-1, n)
  • time complexity poly(r)
  • n is prime ? (x-a)n?xn-a (mod xr-1, n)
  • n is composite ????? (x-a)n?xn-a (mod xr-1, n)

Not true for some (few) values of a,r !
7
Improved Idea
  • Improved Idea Pick many (poly log n) as, check
    for all of them if (x-a)n?xn-a (mod xr-1,
    n)Accept if equality holds for all as

8
Algebraic Background Extension Field
  • Def Consider fields F, E. E is an extension of
    F, if F is a subfield of E.
  • Def Galois field GF(pk) (p prime) is the unique
    (up to isomorphism) finite field containing pk
    elements. (The cardinality of any finite fields
    is a prime-power.)
  • Def A polynomial f(x) is called irreducible in
    GF(p) if it does not factor over GF(p)

9
Multiplicative Group
  • Def GF(pk) is the multiplicative group of the
    Galois Field GF(pk), that is, GF(pk)
    GF(pk)\0.
  • Thm GF(pk) is cyclic, thus it has a generator
    g

10
Constructing Galois Fields
  • Def Fp denotes a finite field of p elements (p
    is prime).
  • Def Let f(x) be a k-degree polynomial.
  • Def Let Fpx/f(x) be the set of k-1-degree
    polynomials over Fp, with addition and
    multiplication modulo f(x).
  • Thm If f(x) is irreducible over GF(p), then
    GF(pk)??Fpx/f(x).

11
Fpx/f(x) - Example
  • Let the irreducible polynomial f(x) be
  • Represent polynomials as vectors (k-1 degree
    polynomial ? vector of k coefficient)
  • Addition

12
Fpx/f(x) - Example
  • Multiplication
  • First, multiply mod p
  • Next, apply mod f(x)

13
The Algorithm
  • Def r is special if
  • r is Almost Sophie-Germain, and
  • qOr(n) (where q is the large prime factor of
    r-1).
  • Input integer n
  • Find r ? O(log6n), s.t. r is special,
  • Let l 2r1/2log n.
  • For t2,,l, if tn output COMPOSITE
  • If n is (prime) power -- npk, for kgt1 output
    COMPOSITE .
  • For a 1,,l, if (x-a)n ? xn-a (mod xr-1, n),
    output COMPOSITE .
  • Otherwise output PRIME.

14
Proofs Structure
  1. Find r ? O(log6n), s.t. r is special,
  2. Let l 2r1/2log n.
  3. For t2,,l, if tn output COMPOSITE
  4. If n is a prime power, i.e. npk, for some prime
    p, output COMPOSITE .
  5. For a 1,,l, if (x-a)n ? xn-a (mod xr-1, n),
    output COMPOSITE .
  6. Otherwise output PRIME.
  • Saw primality test.
  • We next show
  • Special r ? O(log6n) exists.
  • For such r if n is composite s.t. n passes
    steps (3) and (4), then ?a?1..l s.t. (x-a)n ?
    xn-a (mod xr-1, n)(hence, returns COMPOSITE at
    step (5))

15
Finding Suitable r
  1. Find r ? O(log6n), s.t. r is special,
  2. Let l 2r1/2log n.
  3. For t2,,l, if tn output COMPOSITE
  4. If n is a prime power, i.e. npk, for some prime
    p, output COMPOSITE .
  5. For a 1,,l, if (x-a)n ? xn-a (mod xr-1, n),
    output COMPOSITE .
  6. Otherwise output PRIME.
  • Elaborating on step (1)
  • while r lt c log6n
  • if r is prime
  • let q be the largest prime factor of r-1
  • if (q?4r1/2log n) and (n(r-1)/q ? 1 (mod
    r)) break
  • r?r1
  • Complexity O(log6n) iterations, each taking
    O(r1/2 poly log r), hence total poly log n.
  • when break is reached r is prime, q is
    large, and qOr(n)

16
Lemma Special r ? O(log6n) s.t. qOr(n) exists.
  • Proof
  • let ?,?O(log6n), consider the interval ?..?.
  • special numbers are dense in ?..?
  • there are only few primes r??..? s.t Or(n) lt
    ?1/3.
  • Hence, by counting argument, exists a special
    r??..? s.t. Or(n) gt ?1/3.
  • Moreover, Or(n) gt ?1/3 ?? q Or(n).
  • Therefore, exists a special r??..? s.t. qOr(n).

special??..? ? special?1..? -
primes?1..? ??(log6n / loglog n) (using
density of special numbers, and lower bound on
density of primes)
Or(n) lt ?1/3 ? r ?(n-1)(n2-1)...(n?1/3-1).Ho
wever, ? has no more than ?2/3log n prime divisors
assume q doesnt divide Or(n), then n(r-1)/q ?
1, therefore Or(n)?(r-1)/q. However (r-1)/q lt
?1/3 -- a contradiction.
17
Lemma Special r ? O(log6n) exists.
  • Proof
  • let ?,?O(log6n), consider the interval ?..?.
  • ASG numbers are dense in ?..?
  • there are only few primes r??..? s.t Or(n) lt
    ?1/3.
  • Hence, by counting argument, exists a ASG
    r??..? s.t. Or(n) gt ?1/3.
  • Moreover, Or(n) gt ?1/3 ?? q Or(n).
  • Therefore, exists a special r??..?.

ASG??..? ? ASG?1..? - primes?1..?
??(log6n / loglog n) (using density of ASG
numbers, and upper bound on density of primes)
Or(n) lt ?1/3 ? r ?(n-1)(n2-1)...(n?1/3-1).Ho
wever, ? has no more than ?2/3log n prime divisors
assume q doesnt divide Or(n), then n(r-1)/q ?
1, therefore Or(n)?(r-1)/q. However (r-1)/q lt
?1/3 -- a contradiction.
18
Correctness Proof
  1. Find r ? O(log6n), s.t. r is special,
  2. Let l 2r1/2log n.
  3. For t2,,l, if tn output COMPOSITE
  4. If n is a prime power, i.e. npk, for some prime
    p, output COMPOSITE .
  5. For a 1,,l, if (x-a)n ? xn-a (mod xr-1, n),
    output COMPOSITE .
  6. Otherwise output PRIME.
  • Lemma n is composite ? step (5) returns
    composite. That is,
  • If n is composite, and
  • n has no factor t ? l, and
  • n is not a prime-power
  • then ?a?1..l s.t. (x-a)n ? xn-a (mod xr-1, n)

19
Proof
  • Let p be a prime factor of n, and let h(x) be an
    irreducible factor of xr-1,
  • It suffices to show inequality (mod h(x), p)
    instead of (mod xr-1, n), i.e. ?a?1..l s.t.
    (x-a)n ? xn-a (mod h(x), p)
  • Choose p and h(x) s.t.
  • qOr(p), and
  • deg(h(x)) Or(p)

Such p exists Let np1p2pk, thenOr(n)
lcmOr(pi).Therefore qOr(n) ???i qOr(pi)
(as q is prime) Such h exists by previous claim.
20
Proof
  • Assume by contradiction that n is composite, and
    passes all the tests, i.e.
  • n has no small factor, and
  • n is not a prime-power, and
  • ? a?1..l (x-a)n ? xn-a (mod h(x), p),

21
Proof
  • Consider the group generated by (x-a)a?1..l
    (mod h(x), p), i.e.
  • Note ?f(x)?G, f(x)n ? f(xn)
  • Let I m ?f?G, f(x)m ? f(xm) .
  • Lemma I is multiplicative, i.e. u,v?I? uv?I.
  • Proof xr-1xvr-1, therefore
  • hence

22
Proof - n?I ? I is large
  • Prop ?(i,j)?(i,j) nipj ? nipj (since n ? pk)
  • Lemma ??, if ?u,v?I s.t. ?(i,j)?(i,j)
    uivj?uivj, then I?? u?v? gt ?2.
  • Corollary ??, n?I ? I?? u?v? gt ?2. Proof
    p?I.
  • However, Lemma
  • Corollary n?I ? I?? G gt r.

(?1)2 different pairs (i,j), each give a
distinct value
23
Irreducible Factors of (xr-1)/(x-1)
  • Def Let h(x) denote any irreducible factor of
    (xr-1)/(x-1), and d deg(h(x))
  • Claim h(x), dOr(p)
  • Proof Denote kOr(p). Note Fpx/h(x) is of size
    pd, therefore Fpx/h(x) is cyclic of order
    pd-1.
  • kd xr?1 (mod h(x)), hence Oh(x)(x) is r,
    therefore rpd-1, i.e., pd ?1 (mod r), and hence
    kd (recall dOr(p)).
  • dk let g be a generator, then hence pd-1
    pk-1. and therefore dk.

Recall, if r is special with respect to n, then
r-1 has a large prime factor q, s.t.
qOr(n). Choose p s.t. qOr(p) (exists). Then d
is large.
24
Proof I is small
  • Lemma Let m1, m2? I, then m1 ? m2 (mod G) ?
    m1 ? m2 (mod r)
  • Lemma(I is small) I ? G ? r
  • Proof
  • Each two elements in I ? G are different
    mod G.
  • Therefore they are different mod r.
  • Hence I ? G ? r.
  • Contradiction!

25
The End
26
Proof - G is large, Cont.
This is the reason for seeking a large q s.t.
qOr(n)
  • Hence,
  • Prop d ? 2l
  • Proof Recall dOr(p) and qOr(p), hence d ? q ?
    2l (recall q?4r1/2log n, l2r1/2log n)
  • Hence
Write a Comment
User Comments (0)
About PowerShow.com