In-Medium Quarkonia at RHIC and LHC - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

In-Medium Quarkonia at RHIC and LHC

Description:

Title: Heavy Flavor in QGP Author: Ralf Rapp Last modified by: Ralf Rapp Created Date: 3/6/2000 1:42:14 PM Document presentation format: A4 Paper (210x297 mm) – PowerPoint PPT presentation

Number of Views:89
Avg rating:3.0/5.0
Slides: 28
Provided by: Ral46
Learn more at: https://www.bnl.gov
Category:
Tags: lhc | rhic | medium | quarkonia

less

Transcript and Presenter's Notes

Title: In-Medium Quarkonia at RHIC and LHC


1
In-Medium Quarkonia at RHIC and LHC
Ralf Rapp Cyclotron Institute Dept.
of Physics Astronomy Texas AM University
College Station, TX USA Workshop on Newest
Quarkonia Results RHIC AGS Annual Users
Meeting BNL (Upton, NY), 17.-20.06.14
2
1.) Introduction A Calibrated QCD Force
V ½ GeV
Kaczmarek et al 03
r ½ fm
  • Vacuum charm-/bottomonium spectroscopy well
    described
  • Confinement?! Operational criterion linear
    part of potential
  • most sensitive to J/y ? (EBCoul(J/y) 0.05
    GeV vs. 0.6 GeV exp.)
  • nonperturbative treatment
  • potential approach in medium?

3
Outline
1.) Introduction 2.) Quarkonium Transport in
Medium 3.) Comparison to RHIC LHC Data 4.)
Conclusions
4
2.) Quarkonium Transport in Heavy-Ion Collisions
PBMStachel 00,Thews et al 01, GrandchampRR
01, Gorenstein et al 02, Ko et al 02,
Andronic et al 03, Zhuang et al 05, Ferreiro
et al 11,
  • Inelastic Reactions
  • detailed balance

?
-
?
J/y g c c X
  • Rate
  • Equation
  • Theoretical Input Transport coefficients
  • - chemical relaxation rate Gy
  • - equililbrium limit Nyeq(eyB, mc ,tceq)
  • Phenomenological Input
  • - J/y,cc,yc,b initial distributions pp, pA
  • - space-time medium evolution AA hydro,...

5
2.1Thermal Charmonium Properties
(a) Equilibrium Y number
-
  • gc from fixed cc number
  • interplay of mc and
  • constrain spectral shape by
  • lattice-QCD correlators

eyB
mc
6
2.2 Effect of Partial c-Quark Thermalization on
J/y
  • Relaxation time ansatz Nyeq (t) Nytherm(t)
    1-exp(-t/tceq)

Microscopic Calculation
Impact on Regeneration
ZhaoRR 11
Song,Han, Ko 12
  • sensitivity of regeneration on charm-quark
    diffusion

7
3.1 Inclusive J/y at SPS RHIC
Strong Binding (U) Weak Binding (F)
ZhaoRR 10
  • as0.3, charm relax. tceq 4(2) fm/c for U(F)
    vs. 5(10) from T-matrix
  • different composition in two scenarios

8
3.1.2 J/y pT Spectra Elliptic Flow at RHIC
(strong binding)
  • shallow minimum at low pT
  • high pT
  • formation time, b feeddown, Cronin
  • small v2 limits regeneration,
  • but does not exclude it

9
3.1.3 J/y Excitation Function BES at RHIC
PHENIX (forward y) STAR
(central y)
Grandchamp RR 02
  • suppression pattern varies little (expected from
    transport)
  • quantitative pp pA baseline critical to
    extract systematics

10
3.2.1 J/y Predictions at LHC
ZhaoRR 11
  • regeneration becomes dominant
  • uncertainties in sccshadowing

11
3.2.2 J/y at LHC v2
He et al 12
  • further increase at mid-y

12
3.3 ?(1S) and ?(2S) at LHC
Weak Binding Strong Binding
?(1S) ? ?(2S) ?
Grandchamp et al 06, Emerick et al 11
  • sensitive to color-screening early evolution
    times
  • clear preference for strong binding (U
    potential)
  • similar results by

Strickland 12
13
4.) Conclusions
  • Quarkonium discoveries in URHICs
  • - increase of J/y RAA SPS, RHIC ? LHC
  • - low-pT enhancement
  • - sizable v2
  • - increasing suppression of ? (eB? eBJ/y
    )
  • Predicted signatures of QGP transport
    hadronization
  • - controlled by quantitative description of
    RHICSPS data, lattice QCD
  • Implications
  • - T0 SPS (230) lt Tdiss(J/y,?) lt T0RHIC
    (350) lt T0LHC(550) Tdiss(?)
  • - confining force screened at RHICLHC
  • - marked recombination of diffusing charm
    quarks at LHC
  • Uncertainties
  • - input HF cross sections, HF thermalization
  • - initial-state effects (final-state in dAu,
    pPb?!)

14
2.) Thermodynamic T-Matrix in QGP
  • Lippmann-Schwinger equation

In-Medium Q-Q T-Matrix
-
  • potential Va real
  • imaginary parts unitarization (cuts in in-med.
    QQ propagator GQQ)
  • simultaneous treatment of
  • - bound scattering states
  • - quarkonia (QQ) heavy-quark diffusion (Qq,g)

-
Wong, MannarelliRR,MocsyPetreczky,Beraudo et
al., Song et al.,RiekRR,
15
2.2 Brueckner Theory of Heavy Quarks in QGP
Input Process
Output Test
quark-no. susceptibility
Q ? Q 0-modes
lattice data
spectral fcts./ eucl. correlat.
-
2-body potential
QQ T-matrix
-
QQ evolution (rate equation)
Qq T-matrix
Quark selfenergy
exp. data
Q spectra v2 (Langevin)
16
2.) Thermodynamic T-Matrix for Quarkonia in QGP
  • Lippmann-Schwinger equation

In-Medium Q-Q T-Matrix
-
  • potential Va strictly real
  • imaginary parts unitarization (cuts in in-med.
    QQ propagator GQQ)

-
  • gluo-dissosciation (coupled channel)
  • BhanotPeskin 85
  • Landau damping (HQ selfenergy)

17
2.3 Free vs. Internal Energy in Lattice QCD
F1(r,T) U1(r,T) T S1(r,T)
Free Energy
Internal Energy
Kaczmarek Zantow 05
-
-
  • strong QQ potential, U Hint
  • large mQ mQ U1(8,T)/2
  • weak QQ potential
  • small mQ mQ F1(8,T)/2
  • F, U, S thermodynamic quantities
  • Entropy many-body effects

18
3.2.2 D-Meson Thermalization at LHC
  • to be determined

19
3.3.3 J/y at LHC III High-pt ATLASCMS
ZhaoRR 11
  • underestimate for peripheral
  • (spherical fireball reduces surface effects )

20
3.3.4 Time Evolution of J/y at LHC
Strong Binding (U) Weak
Binding (F)
  • finite cooking-time window, determined by
    inelastic width

ZhaoRR 11
21
3.4 ? at RHIC and LHC
Weak Binding Strong Binding
RHIC ? LHC ?
Grandchamp et al 06, Emerick et al 11
  • sensitive to color-screening early evolution
    times

22
3.2 Charmonia in QGP T-Matrix Approach
  • U-potential,
  • selfconsist. c-quark width
  • Spectral Functions
  • - J/y melting at 1.5Tc
  • - cc melting at Tc
  • - Gc 100MeV
  • Correlator Ratios
  • - rough agreement with
  • lQCD within uncertainties

Aarts et al 07
Mocsy Petreczky 0508, Wong 06, CabreraRR
06, Beraudo et al 06, Satz et al 08, Lee et
al 09, RiekRR 10,
23
3.2.2 T-matrix Approach with F-Potential
  • selfcons. c-quark width
  • Spectral Functions
  • - J/y melting at 1.1Tc
  • - cc melting at Tc
  • - Gc 50MeV
  • Correlator Ratios
  • - slightly worse agreement
  • with lQCD

Aarts et al 07
RiekRR 10
24
3.3 Charm-Quark Susceptibility in QGP
?
2
?
G? 0
m T
25
4.2.5.2 Thermalization Rate from T-Matrix
gc 1/fm
  • thermalization 4 (2) times faster using U (F) as
    potential than pert. QCD
  • momentum dependence essential (nonpert. effect ?
    K-factor!)

RiekRR 10
26
3.1.3 Momentum Dependence of Inelastic Width
  • dashed lines gluo-dissociation
  • solid lines quasifree dissociation
  • similar to full NLO calculation

Park et al 07
ZhaoRR 07
27
4.3 J/y at Forward Rapidity at RHIC
Zhao RR 10
Write a Comment
User Comments (0)
About PowerShow.com