Sodium, Potassium and H20 Disorders - PowerPoint PPT Presentation

1 / 55
About This Presentation
Title:

Sodium, Potassium and H20 Disorders

Description:

Title: Potassium Homeostasis Objectives Author: Patrick Nachman Created Date: 9/12/1997 5:02:10 PM Document presentation format: On-screen Show Other titles – PowerPoint PPT presentation

Number of Views:382
Avg rating:3.0/5.0
Slides: 56
Provided by: PatrickN152
Category:

less

Transcript and Presenter's Notes

Title: Sodium, Potassium and H20 Disorders


1
Sodium, Potassium and H20 Disorders
  • Maria E. Ferris, MD, MPH

2
Case Presentation
  • 14 y.o male ? chronic illnesses is admitted for
    knee surgery 12 hr. post ? Sz (GTC)
  • Labs Na 128, K 4.5, Cl 98, CO2 20, Ca 9, Mg 2,
    glucose 130 U.Na 35
  • a) CHF, b) ? total body Na, c) dilutional
    ?Natremia, d) Renal Na wasting e) third spacing
    of fluid

3
Answer
  • C) Dilutional Hyponatremia
  • Must investigate the IVF that were hung during
    surgery (D5W)

4
Question
  • Maintenance daily Na requirements for a 50 Kg, 12
    y.o. boy?
  • a) 150 mEq, b) 100 mEq, c) 63 mEq,
  • d) 50 mEq and e) 45 mEq

5
Answer
  • c) 63 mEq/ day

6
Na Transport along the nephron
7
H2O Transport along the nephron
8
Na and Cl Reabsorption
  • In the Proximal Tubule, 17,000 mEq of the 25,200
    mEq (67) of NaCl filtered per day is absorbed by
    para-cellular and trans-cellular pathways.
  • Auto regulation of the GFR, glomerular-tubular
    balance, load dependency by the L.of H. the DT,
    maintain a constant fraction of the filtered Na
    load to the beginning of the collecting duct.

9
Hyponatremia
  • In .95 of the cases it is due to impairment of
    H2O excretion
  • Factors that affect this excretion are
  • Fluid intake
  • Ability to deliver NaCl to diluting segment and
    its reabsorption
  • ADH suppression

10
Hyponatremia
  • In renal dysfunction, a 1-2 fold change in SCr
    will ? volume excretion of free H2O by 4-fold
  • This in great part due to ? delivery

11
Case Presentation
  • 6y.o c/o VP shunt malfunction, afebrile and
    lethargic
  • BUN 3, SCr 0.5, NA 125,Cl 90, Urine Osmolality
    300, UNa 60. Best next step?
  • a) Demeclocycline b) diuretics, c) IV Normal
    Saline, d) Immediate VP shunt removal e) fluid
    restriction

12
Answer
  • e) fluid restriction

13
Case Presentation
  • 4 y.o. with severe DH due to NV, (-) PMHx
  • Labs Na 125, Serum Osm 315. Findings are most
    likely due to an increase in
  • a) Cl, b) SCr c) glucose, d) P e) K

14
Answer
  • c) Glucose

15
  • Hypernatremia

16
Case Presentation
  • 2 Wk old, PNC, nl delivery w/ GTC Sz
  • Wt. 2.5 Kg (200 gm lt birth wt) male, BP
    70/40,P140, R50
  • Glu 120, BUN 50, NA 170, CO2 12, Ca 9 Mg 1.5.
    The Sz is likely due to
  • a) ? Ca, b)? glycemia, c) ?Mg,
    d) intracraneal hge. e) meningitis

17
Answer
  • d) Intracraneal hemorrhage due to hypernatremia

18
Case Presentation
  • 2 y.o. with Cong. heart Dz ? 1 day Hx of resp.
    distress LEs edema
  • BUN 40, SCr 1.5, NA 125, K 4, Cl 95,
  • CO2 20. Most appropriate next test?
  • a) Serum Osmolality b) Urine FENa, c)
    Urine pH, d) Urine S.G, e) venous pH

19
Answer
  • B) FENa

20
Potassium Disorders
21
K Homeostasis
Diet100 mEq/d
Feces 10 mEq/d
Int. Abs 90 mEq/d
Insulin, Epi Aldosterone
ECF 65mEq/d
Tissue Stores
Plasma K, Aldo ADH
Urine 90 mEq/d
22
K Homeostasis
  • K is one of the most abundant cations in the
    body and a major determinant of the resting
    membrane potential, which is crucial for cell
    growth/division excitability of nerve muscle.
  • Homeostasis is maintained by hormones the
    kidneys, which adjust K excretion to match PO
    intake.
  • K excretion is determined by the rate of K
    secretion by the distal tubule CCD

23
Transcellular K Distribution
3Na
ATPase
2K
Kcell 140-160 mEq/L
Ke 4-5 mEq/L
24
Relationship Between Kserum and Total Body
Potassium in 70 kg Adult
6
5
Serum K mEq/L
4
3
2
Normal
-150 mEq
150 mEq
Total Body Potassium
25
Potassium Distribution
ECF
80 mEq
2
ICF
3920 mEq
98
26
Potassium Content in Fruits and Vegetables
  • Amount of Potassium Milligrams mEq
  • Potato with skin 844 mg 20
  • 3 Oz. Dried Fruit 796 mg 20
  • 10 Dried Prunes 626 mg 16
  • 1 Banana 451 mg 11
  • Tomato 254 mg 6.5
  • 1 Kiwi 252 mg 6.5
  • 8 Oz. Glass of 250 mg 6.5
  • Orange Juice
  • 1Grapefruit 158 mg 4

27
Renal Tubular Potassium Handling
Filtered load 600-700 mEq per day
K Reabsorption 20-30
K Secretion
K Reabsorption 60-70
Urinary Excretion 90mEq/day
28
Urinary Potassium Excretion
  • Normal kidneys have the capacity to excrete
    500-600 mEq per day (average K excretion 40-100
    mEq/day).
  • The key site of renal potassium excretion
    regulation occurs at the cortical collecting
    duct.

29
Cortical Collecting Duct - Principle Cells
Na
Peritubular capillary
Na
3Na
ATPase
2K
Tubular lumen
K
Aldosterone
R-Aldo
Cl-
30
Cortical Collecting Duct
Na
Tubular lumen
Peritubular Capillary
Na
3Na
Principle Cell
ATPase
2K
K
Aldosterone
R-Aldo
Cl-
ATPase
3Na
H
ATPase
Intercalated Cell
H2O
2K
T
HCO3-
OH- CO2
K
NH4
ATPase
Cl-
H
NH3
H
NH3
31
Mechanisms Leading to Hyperkalemia
  • Impaired entry into cells
  • Increased release from cells
  • Decreased urinary excretion

32
Hyperkalemia Redistribution ICF?ECF
  • H
  • ?Glucose
  • ?Insulin
  • Digoxin
  • ß-blockers
  • Cell injury

3Na
ATPase
2K
K
33
Factors that Impair Urinary K Excretion
  • Collecting duct lumen relatively more
    electropositive
  • ? Flow and sodium delivery to the CCD
  • ? Aldosterone production or activity

34
Effect of Amiloride
Tubular lumen
  • Predict changes in the following
  • Relative lumen charge
  • Renal K excretion
  • Serum potassium
  • Renal H excretion
  • Arterial pH

Aldosterone
35
Hyperkalemia Decreased Renal Excretion
  • Volume depletion? decreased flow in CCD
  • Decreased renin-AII-aldo production
  • NSAIDS ? ? renin
  • ACEI ? ? AII
  • Heparin ? ? aldosterone production
  • Spironolactone ? ? aldosterone activity
  • Inhibition of CCD Na channel
  • Amiloride, triamterene, trimethoprim, pentamidine

36
ECG Changes of Hyperkalemia
Serum K (mEq/L) ECG
9 Sinoventricular V-fib 8 Atrial
standstill Intraventricular block 7 Tall
T wave. Depressed ST segment 6 Tall T
wave. Shortened QT interval
37
ECG Changes due to Hyperkalemia
38
Treatment of Hyperkalemia
  • Therapy Mechanism of Action

Calcium Stabilization of Membrane
Potential Insulin Increased K entry into
Cells Beta-2 Agonists Bicarbonate (if pHalt7.2
in setting of acidosis) Dialysis Potassi
um removal Cation Exchange Resin (sodium
polystyrene Kayexalate)
39
Differential Diagnosis of Hypokalemia
  • Increased entry into cells
  • Inadequate intake or GI losses
  • Urinary losses

40
Hypokalemia Redistribution ECF?ICF
  • Insulin
  • ß-2 agonists
  • Alkalosis
  • Barium
  • poisoning
  • Hypokalemic
  • periodic
  • paralysis

3Na
ATPase
2K
K
41
Factors that Enhance Urinary K Excretion
  • Lumen of CCD more electronegative
  • Enhanced flow and sodium delivery to the CCD
  • Increased aldosterone

42
Sites of Action of Diuretics
Thiazide Diuretics
Loop diuretics
Blood
Lumen
(Defect Bartters)
Na Cl-
Blood
Lumen
Na K 2Cl--
Thiazide diuretics
Loop diuretics
(Defect Gitelmans)
43
Interpretation of Urinary K in the Setting of
Hypokalemia
GI Losses or prior Renal K Loss
or Diuretic Therapy Current
Diuretic Use 24o Urine K lt 20
mEq gt 30 mEq FeK lt 6
gt 10
44
Metabolic Alkalosis in Vomiting
35
Volume Depletion
30
Serum HCO3-
25
20
7.0
UpH
5.5
4.0
50
UCl-
30
10
Generation Phase
Late Maintenance Phase
Early Maintenance Phase
45
Effect of Gastric Loss of HCl, Na/H2O (Volume)
Predict changes in the following 1. Relative
lumen charge 2. Renal K excretion 3. Serum
potassium 4. Renal H excretion 5. Arterial pH
HCO3-
46
Urine Na and Cl- in the Differential Diagnosis
of Metabolic Alkalosis and Hypokalemia
Urine Electrolytes Na Cl- Condition
(meq/L)
Vomiting Alkaline urine gt15 lt15 Acidic
urine lt15 lt15 Diuretic Drug active gt15 gt15 R
emote use lt15 lt15 Hyperaldosteronism gt15 gt15
47
K disequilibrium
  • Acid-base disturbances
  • Acute metabolic acidosis ?K
  • Chronic metabolic acidosis ?K
  • Metabolic alkalosis ?K
  • Exercise ( ?-blockers ?K)
  • Cell lysis (trauma, burns, tumor-lysis, G-I
    bleed)
  • Plasma osmolality ? (? by 10 mOsm/Kg ?K)
  • Changes in tubular fluid flow

48
Case Presentation
  • 10 month old with CHF on 2 mg/Kg lasix b.i.d. His
    most likely serum labs?
  • a) pH 7.2, K 3.0, b) pH 7.2, K 3.5, c) 7.2, K
    4.5, d) pH 7.5 K 3.0, e) pH 7.5, K4.5

49
Answer
  • d) Metabolic alkalosis with hypokalemia

50
Case Presentation
  • After gaining 150 yards and 28 carries a football
    player becomes disoriented, gross hematuria LOC
  • T106.7,P160,R30,100/60, BUN54, CK??? Next day
    oliguria develops despite CR and fluid support.
    Most likely Dx?
  • a) Heat stroke, b) HUS, c)Hgic. shock
    encephalopathy, d)Reye Sx. e) viral Sx

51
Answer
  • a) Heat stroke and Rhabdomyolysis

52
Chloride disorders
53
Answer
  • a) Urinary Cl

54
Case presentation
  • 6 Week old baby c/o emesis p. each feed X 2 wks.
    always hungry, emaciated, dry mucosas, ? RUQ
    abdominal mass. Labs?
  • a) Hypochloremic metabolic acidosis, b)
    Hypochloremic metabolic alkalosis, c) Resp.
    alkalosis, d) Respiratory acidosis metabolic
    compensation, e) nl. electrolytes

55
Answer
  • b) Hypochloremic metabolic alkalosis likely 2o.
    To pyloric stenosis
Write a Comment
User Comments (0)
About PowerShow.com