Chapter 2 Adsorption of Surfactants - PowerPoint PPT Presentation

1 / 48
About This Presentation
Title:

Chapter 2 Adsorption of Surfactants

Description:

Title: PowerPoint Author: dell Last modified by: Administrator Created Date: 3/30/2004 1:33:28 PM Document presentation format: – PowerPoint PPT presentation

Number of Views:457
Avg rating:3.0/5.0
Slides: 49
Provided by: dell55
Category:

less

Transcript and Presenter's Notes

Title: Chapter 2 Adsorption of Surfactants


1
Chapter 2 Adsorption of Surfactants at Interface
2006.3.18.
2
(No Transcript)
3
1. The surface excess concentration and the
Gibbs adsorption equation
  • About adsorption
  • The interfaces of adsorption
  • G-L surface adsorption foam
  • L-L interface adsorption emulsion
  • S-L interface adsorption wetting, dispersing
  • (2) Surface active and adsorption
  • Surface active ? Adsorption on surface

4
  • (3) Tow type in surface adsorption
  • Orientation adsorption of hydrophobic groups
  • (b) Orientation adsorption of hydrophilic groups.

5
  • 2. Surface excess concentration
  • Interface phase (or layer)
  • two phases inter-dissolved
  • ???
  • Thickness of interface phase
  • a couple of molecules 0.5nm
  • in dilute solution

6
  • (2) Surface excess
  • concentration
  • If total mole
  • number of i component ni0
  • (b) The concentration of ??? phase
  • Ci? Ci? and Ci? gt Ci?
  • (c) The boundary surface ss
  • total volume of ??? phase V?, V?
  • ni Ci? V? Ci? V?
  • (d) Surface excess ni? ni0- nini0- (Ci? V?
    Ci? V?)

7
  • (e) Surface excess concentration
  • ?i ni?/A A area of ss-surface
  • ????????i ???????????????????i ?????????
  • ???????????, Ci? Ci? ? 1, ?i
    ????????,?????????
  • ?i ni?/A ni0- ni/A
  • ni0- (Ci? V? Ci? V?)/A
  • ? ni0 /A

8
  • 2. Gibbs adsorption equation
  • Thermodynamics
  • Mono-component
  • UTS-PV
  • Multi-component
  • UTS-PV ??ini
  • In surface phase
  • U? TS? -PV? ??ini? ?A

9
  • Total differential
  • dU? TdS? S? dT - PdV? - V?dP ??i dni? ?ni?
    d?I ?dA A d? ?
  • Thermodynamic equation
  • dU? TdS? - PdV? ??i dni? ?dA ?
  • ?-?, then
  • S? dT - V?dP ?ni? d?i A d? 0
  • ( )TP
  • ?ni? d?i A d? 0 or d? -?ni? /Ad?i
  • d? -??id?i

10
  • d? -??id?i
  • Two-component d? -?1d?1 - ?2d?2
  • ss surface uncertain! So ?i uncertain!
  • (2) Gibbs method
  • If solvent i 1, then ?1 0
  • Gibbs eq. d? - ?2(1)d?2
  • (1)-solvent 1 as frame of reference
  • ?2 ?20 RTlna2
  • Gibbs eq. d? - ?2(1)d?2 - RT?2(1)dlna2

11
  • (b) Gibbs equation
  • ?2(1) -(1/ RT) d?/dlna2 -(a2/ RT) d?/da2
  • ? -(1/ RT) d?/dlnc2 -(c2/ RT) d?/dc2
  • d?/dc2lt 0, c2?, ? ? , ?2(1) gt 0 positive
    adsorption
  • d?/dc2 0, c2? , ?2(1) 0 no adsorption
  • d?/dc2gt 0, c2?, ? ? , ?2(1) lt 0 negative
    adsorption
  • (c) Multi-component
  • -d? ??id?i RT ??i(1) dlna2
  • ? RT ??i(1) dlnc2

12
2. Surfactants adsorption at G-L interface
  • Calculation of ?
  • ( )TP,Two-component
  • ?2(1) -(1/ RT) d?/dlna2 -(a2/ RT) d?/da2
  • ? -(1/ RT) d?/dlnc2 -(c2/ RT) d?/dc2
  • Nonionics (c2 lt 10-2)
  • ?2(1) -(1/ RT) d?/dlna2 -(a2/ RT) d?/da2
  • ? -(1/ RT) d?/dlnc2 -(c2/ RT) d?/dc2
  • If (d?/dc2)c2 is known, ?2(1) at c2 can be
    calculated.

13
  • (2) Ionics
  • 1-1type ionics
  • RNa R- Na
  • -(d?/ RT) ?R-(1) dlnaR- ?Na(1) dlnaNa
  • ?OH-(1) dlnaOH- ?H(1) dlnaH
  • Very low degree of ionization , ?R-(1) ? ?Na(1)
  • -(d?/ RT) ?R-(1) dlnaR- dlnaNa
  • ?R-(1) dlnaR- aNa
  • a? a?a-?-, ?R-(1) dlna2 2 ?R-(1)
    dlna
  • ? 2 ?R-(1)
    dlnc? 2 ?R-(1) dlnm

14
  • (b) Electrolyte Surface excess concentration ?
  • homo ion e.g. NaCl ??
  • no homo ion e.g. KCl , K and Na exchange
  • ? -(d?/ RT) x?R-(1) dlnm
  • x?R-(1) dlnmR- x?R-(1) dlncR-
  • x 1 cR-/(cR-cs)
  • Cs- concentration of salt
  • 1-1type finite quantity cs 0, x 2
  • -(d?/ RT) x?R-(1) dlnm
  • Infinity quantity cs ?, x 1.
  • -(d?/ RT) ?R-(1) dlnm

15
  • No 1-1type ionics
  • if 1mole ionics ionize to x mole positive
    and negative ions, then
  • -(d?/ RT) x?2(1) dlna
  • 2. Adsorption of surfactants at solution surface
  • Langmuir adsorption isotherm
  • ? ?0 - ?0ln(1 ? c2)
  • d ?/d c2 -?0 ?/(1 ? c2)
  • ?2(1) ? -(c2/ RT) d?/dc2
  • (?0 / RT)? c2/(1 ? c2)
  • ??(1) ? c2/(1 ? c2)

16
(2) The Surface excess concentration ?2(1)
??(1) unit mole/m2
17
  • (3) The area per molecule A A?
  • A 1018/NA ?2(1) (nm2)
  • lauryl sodium sulfate???????

18
The area of C12H25O(C2H4O)nH(55ºC)
The area of C16H33O(C2H4O)nH(55ºC)
19
3. Surfactants adsorption at L-L interface
  • 1. L-L interface
  • L-L two phases
  • Distribution of
  • surfactants in L-L two phases

20
  • 2. Adsorption of
  • PEO nonionics
  • at coal oil-water interface
  • TltTP(Fig. a)
  • TgtTP(Fig. b)
  • benzene
  • PEO in water
  • PPO in benzene

21
4. Interfacial Adsorption Surfactivity
  • Efficiency(??) and Effectiveness(??) of Surface
    Adsorption
  • What are the Efficiency (??) and the
    Effectiveness (??) ?
  • Efficiency(??) the effects produced per wastage
  • Effectiveness(??) the most effects
  • (2) Efficiency(??) of Surface Adsorption
  • ?I/ci adsorption per-concentration
  • Two-component Gibbs eq. ?2/c2 - (1/RT)d?/dc2
  • If - d?/dc2 ? , then ?2/c2 ?

22
  • (3) Effectiveness(??) of Surface Adsorption
  • ??- saturated adsorption excess concentration
  • (4) Some factors of influence to them
  • Hydrophobic groups
  • hydrophobicity(R, or SiR or YR)?, ?2/c2
    ?
  • if RgtC16, then ?? ?
  • Hydrophilic groups
  • ?2/c2 Nonionics gt Ionics (same R)
  • ?? Nonionics gt Ionics (coulomibic repulsion)
  • Nonionics n?, ???

23
  • (c) Additives
  • Electrolyte , Ionic Strength I(1/2)?CiZi2 ?,
  • hydrophilicity ? , surface activity ?, ?2/c2?
  • the radius of ionic atmosphere ?, ???
  • Regulator of water structure(??????)
  • Promoters ? fructose,xylose ?2/c2?
  • Breakers ? urea,lower alcohol ?2/c2?
  • ?? no marked affect
  • (d) Temperature if T?, then
  • Ionics water-soluble?, ?2/c2? repulsion ?, ???
  • Nonionics water-soluble?, ?2/c2? ???

24
  • 2. Efficiency(??) and Effectiveness(??) of
    Surface Tension Reduction
  • (1) Efficiency(??) of Surface Tension Reduction
  • Traube rule
  • Surface Pressure(???) ? ?0 - ?
  • Efficiency(??) ?/c2 ?, Efficiency?
  • (b) PC20 - log10 c ? 20mN/m ?, Efficiency?
  • (2) Effectiveness(??) of Surface Tension
    Reduction
  • ?CMC ?0 - ?CMC ?, Effectiveness?
  • (3) Some Factors of Influence to Them
  • Efficiency of Surface Tension Reduction
  • ??2 Efficiency of Surface adsorption

25
  • Fluorocarbons gt Silicones gt Hydrocarbon gt
    Branched Hydrocarbon
  • Nonionics gt Zwitterion gt Ionics
  • I ?, PC20?
  • (b) Effectiveness(?CMC ) of Surface Tension
    Reduction
  • From Gibbs Eq. d? -d? xRT??dlnC
  • ?? ?2 - ?1 xRT?? ?lnC xRT?? (lnC2-lnC1)
  • If C1C20, ?1 20mN/m C2 CMC, ?2 ?CMC , then
  • ?CMC 20xRT ?? ln(CMC/C20)
  • x mole number dissociated by1 mole ionics

26
  • (CMC/C20)?, C20? or CMC?, Surface Tension
    Reduction gt Micelle
  • (CMC/C20)?, C20? or CMC?, Surface Ten?sion
    Reduction lt Micelle
  • ?Generally ?CMC ?? , but some special case
    ,e.g.
  • Branched Chain Surfactants
  • branching degree ?, ?? ?, CMC ?, (CMC/C20) ?
  • ? ?CMC ?
  • The Branched Chain Surfactants is a Surfactants
    of Surface Tension Reduction.

27
Efficiency(??) and Effectiveness(??)
of Surfactants at Interface
28
Efficiency(??) and Effectiveness(??)
of Surfactants at Interface
29
Efficiency(??) and Effectiveness(??)
of Surfactants at Interface
30
Efficiency(??) and Effectiveness(??)
of Surfactants at Interface
31
Efficiency(??) and Effectiveness(??)
of Surfactants at Interface
32
Efficiency(??) and Effectiveness(??)
of Surfactants at Interface
33
CMC/C20 Ration of some Surfactants
34
CMC/C20 Ration of some Surfactants
35
3. Insolubility Monomolecular Membrane
  • Formation of Monomolecular Film
  • 1769, Franklin Spread a cup of olive oil
    (???80 oleic acid) on 2000m2 of pool, than the
    wave of pool was calm immediately.
  • (2) Every Stations of Monomolecular Film
  • Gaseous film
  • ideal gas -d?/dc - ??/?c2
    -(?-?0)/(c2-0)
  • (?0-?)/c2
    ?/c2
  • From Gibbs equation ?2(1) ? -(c2/ RT) d?/dc2

  • ?/RT ?/N0kT
  • ?/N0 ?2(1) ?A kT

36
  • (b) Liquid film expand film(L1) condensed
    film(L2)
  • L1 A 50Å2 (? - ?0)(A A0) kT
  • L1?L2 transition region , condensability.
  • L2 A? A b - a?
  • (c) Solid film(S) A 20Å2

37
(No Transcript)
38
(No Transcript)
39
5. Surfactants adsorption at S-L interface
  • 1. Adsorptive capacity and its determination from
    solution
  • (1) Adsorbents(???)
  • (2) Adsorbate (???)
  • (3) Apparent Absorbency(?????)
  • x/m (C0-C)V/m mole/g
  • 2. Mechanisms of Adsorption at S-L interface
  • L-S Interface may be Electrified, Adsorption
    at S-L interface is comparatively complex.
  • Ion Exchange adsorption

40
(2) Ion Pairing (3) Hydrogen
bonding (4)Acid-Base Interaction
41
(5) Adsorption by Polarization of ?
Electrons (6) Adsorption by Dispersion
Forces (7) Hydrophobic bonding
42
  • 3. Factors Affecting the Adsorption at S-L
    Interface
  • (1) Adsorbate (???)
  • Hydrophobic Groups
  • hydrophobicity (e.g. R)?, ??
  • fluocarbon chains gt siloxane gt hydrocarbon chains
  • (b) Hydrophilic Groups
  • Ionics with different
  • charge of interface gt
  • Nonionics gt Ionics
  • with same charge
  • of interface

43
  • (2) Temperature
  • Ionics T?, ??
  • PEO Nonionics T? , ??
  • (3) pH
  • Surface charge of adsorbents(???)IEP, ZEP
  • pH?, negative surface charge
  • pH?, positive surface charge
  • (b) Charge of adsorbates(???) IEP
  • (4) Additives
  • Electrolyte , I(1/2)?CiZi2 ?, radius of ionic
    atmosphere ?, hydrophilicity ? , ??, ???

44
  • Regulator of water structure(??????)
  • Promoters ? fructose,xylose?/c ?, ?? (small)
  • Breakers ? urea,lower alcohol ?/c?, ?? (small)
  • (6) Adsorbents(???)
  • Adsorption from aqueous solution onto adsorbents
    with strongly charged sites
  • Such substrates as wool and other polyamides at
    pH above and below their isoelectric points
  • Such oxides as alumina at pH above and below
    their points of zero charge

45
  • cellulosic and silicate surfaces at high pH
  • e.g. Ion Exchange, Ion Pairing, Hydrogen
    bonding adsorption
  • S-shaped adsorption isotherm for an ionics on an
    oppositely charged substrute.
  • ?ion exchange
  • ?interaction of hydrophobic chains. The conc.
    Well below the CMC,-hemimicelle formation or
    cooperative adsorption

46
  • (b) Adsorption from aqueous solution onto
    nonpolar, hydrophobic dsorbents
  • e.g. carbon and polyethylene or polypropylene

Adsorption of sodium dodecyl sulfate onto Graphon
at 25ºC(?0.1MNaCl aq.)
47
Adsorption of dodecyltrimethylammonium bromide
onto Graphon at 25ºC (?0.1MNaBr aq.)
48
  • (c) Adsorption from aqueous solution onto polar
    adsorbents without strongly charged sites
  • such as cotton, polyesters and polyamides in
    neutral solution
  • by a combination of hydrogen bonding and
    adsorption or dispersion forces
  • Langmuir adsorption type
Write a Comment
User Comments (0)
About PowerShow.com