Digital Radio SoC Lab - PowerPoint PPT Presentation

1 / 35
About This Presentation
Title:

Digital Radio SoC Lab

Description:

Title: Signal Detector Design Author: dreamofice Last modified by: Bernard Created Date: 1/16/2004 4:31:24 AM Document presentation format: (4:3) – PowerPoint PPT presentation

Number of Views:77
Avg rating:3.0/5.0
Slides: 36
Provided by: dream9
Category:
Tags: soc | digital | gate | lab | nand | radio

less

Transcript and Presenter's Notes

Title: Digital Radio SoC Lab


1
Digital Radio SoC Lab
  • 2004 Spring

2

Timing Fundamentals
  • Content
  • Notation summary
  • Propagation delay
  • Rise and Fall time
  • Contamination delay
  • Combinational logic in series
  • D-latch
  • Edge triggered flip-flop
  • Flip-Flop timing
  • References

3
Timing Fundamentals
  • Notation summary
  • rise time
  • fall time
  • propagation delay
  • propagation delay from high to low
  • propagation delay from low to high
  • contamination delay
  • A? B??? propagation delay
  • A? B??? contamination delay
  • or setup time
  • hold time
  • propagation delay? ?? ? path? delay
  • FF1 (? ?? Flip-Flop)? propagation
    delay
  • clock period
  • maximum clock frequency
  • resolution time

4
Timing Fundamentals
  • Propagation Delay
  • Valid input? ???? valid output? ?? ? ?? delay?
    Upper bound
  • ?? input-output path? valid input?? valid output
    ?? transition??? ??? time delay ? ?? ? delay
  • ? circuit? ???? transistor?? turn on/off
    ??? ??? ???

5
Timing Fundamentals
  • Propagation Delay (Cont.)
  • Assumption
  • Input? ideal digital signal ?
  • Contamination delay 0

Average Propagation Delay
6
Timing Fundamentals
  • Propagation Delay (Cont.)

7
Timing Fundamentals
  • Propagation Delay (Cont.)

8
Timing Fundamentals
  • Propagation Delay (Cont.)
  • Sedra/Smith, Microelectronic Circuits, chapter 5
  • When
  • - where
  • When

9
Timing Fundamentals
  • Propagation Delay (Cont.)
  • Falling Case
  • n-MOS ON saturation
  • P-MOS OFF linear

10
Timing Fundamentals
  • Propagation Delay (Cont.)
  • Falling Case
  • When

11
Timing Fundamentals
  • Propagation Delay (Cont.)
  • Falling Case
  • When

12
Timing Fundamentals
  • Propagation Delay (Cont.)
  • Falling Case

13
Timing Fundamentals
  • Propagation Delay (Cont.)
  • Falling Case

14
Timing Fundamentals
  • Propagation Delay (Cont.)
  • Falling Case
  • Example

15
Timing Fundamentals
  • Propagation Delay (Cont.)
  • Falling Case
  • Example (Cont.)
  • - (i)
  • - (ii)

16
Timing Fundamentals
  • Rise and Fall time
  • ? ? time constant
  • Rise time Invalid low?? valid high?
    transition?? time
  • Fall time Invalid high?? valid low?
    transition?? time
  • (ex) inverter

17
Timing Fundamentals
  • Rise and Fall Time (Cont.)

18
Timing Fundamentals
  • Contamination delay
  • Invalid input? ???? invalid output? ?? ? ??
    delay? lower bound
  • Invalid input? propagate??? ??? ????, ? ??? ??
    valid? output?
  • ?? input-output path? invalid input?? invalid
    output?? transition? ???? ? ??? time delay ? ??
    ?? delay
  • Additional optional timing spec.
  • ?? ??? ?? spec.??? register ??? timing margin? ??
    ??? spec.
  • Spec? ?? ?? ?? ?? ??? ???? 0?? ???
  • ?? ?? ?? ?? ??? ??? ? ??

19
Timing Fundamentals
  • Contamination delay (Cont.)
  • Combinational logic in series Timing
    uncertainty ??? ?? 2
  • Combinational logic circuit? cascade??
    propagation delay? ??? element delay? ?? ?
    (contamination delay? ????)
  • Shaded region? uncertainty ??? (unstable or
    unknown state)
  • Contamination delay lt propagation delay

20
Timing Fundamentals
  • Contamination delay (Cont.)
  • (ex 1) Timing analysis Cascaded inverter

21
Timing Fundamentals
  • Contamination delay (Cont.)
  • (ex 2) Timing analysis Contamination delay
    Propagation delay
  • NAND gate? ?
    ? ??? ?? ?, ?? logic? timing ??
  • Timing analysis
  • ? input?? output?? ???? ?? path ? minimum
    cumulative contamination delay 1ns 1ns 2ns
  • ? input?? output?? ???? ?? path ? maximum
    cumulative propagation delay 4ns 4ns 4ns
    12ns

NAND
22
Timing Fundamentals
  • Contamination delay (Cont.)
  • (ex 2) Timing analysis Contamination delay
    Propagation delay (Cont.)

Case 1
Case 2
23
Timing Fundamentals
  • Contamination delay (Cont.)
  • (ex 2) Timing analysis Contamination delay
    Propagation delay (Cont.)
  • NAND gate? ?
    ? ??? ?? ?, ?? logic? timing ??
  • - Worst case? ???? ?? contamination delay?
    minimum ??? ??, propagation delay? maximum??? ??

24
Timing Fundamentals
  • Contamination delay (Cont.)
  • Contamination delay? ???? ??

25
Timing Fundamentals
  • D latch

26
Timing Fundamentals
  • D latch
  • Interval prior to G transition for which D must
    be stable valid
  • Interval following G transition for which D must
    be stable valid

27
Timing Fundamentals
  • Edge-triggered Flip Flop

28
Timing Fundamentals
  • Edge-triggered Flip Flop
  • Only one latch transparent at any time
  • Master (latch 1) closed when slave (latch 2) is
    open
  • Slave closed when master is open
  • Q only changes shortly after 0 ? 1 transition of
    CLK
  • Flip Flop appears to be triggered by rising edge
    of CLK

29
Timing Fundamentals
  • Flip-Flop Timing
  • Setup time
  • Clock pulse? triggering edge ??? input? ?? ????
    ????? ?? ???? time interval
  • Hold time
  • Clock pulse? triggering edge ??? input? ?? ????
    ????? ?? ???? time interval

30
Timing Fundamentals
  • Flip-Flop Timing (Cont.)

31
Timing Fundamentals
  • Flip-Flop Timing (Cont.)
  • (ex) Timing analysis setup time hold time
  • Clock period 25 ns ??, clock skew? ??? ???
  • Timing violation ?? ?? ?? Flip-Flop? maximum
    setup time? hold time
  • Maximum setup time
    25 6 max(11,9) 8ns
  • Maximum hold time
    2 min(4,5) 6ns

32
Timing Fundamentals
NAND gate
  • Metastability

SR latch truth table
33
Timing Fundamentals
  • Metastability (Cont.)
  • Reason of Metastability
  • Setup or hold time violation
  • Asynchronous input signal
  • How long does it stay in metastability?
  • Its unpredictable
  • Thermal or induced noise? ?? metastable state??
    ??? 0 or 1? stable state? ??

34
Timing Fundamentals
  • Metastability (Cont.)
  • Synchronizer operation
  • If the asynch. Input doesnt meet a stable
    condition during setup time,
  • itll be clocked through with a latency of one
    clock cycle
  • Otherwise, FF1 may enter metastability
  • If metastability is resolved in less than one
    clock - FF2 setup time,
  • FF2 will have a stable input

35
Timing Fundamentals
  • References
  • 1 MIT Computation structure lecture note,
    chapter 3 Gate
  • 2 William J. Dally, Digital system
    engineering, CAMBRIDGE university press, chapter
    12 Timing Circuits
Write a Comment
User Comments (0)
About PowerShow.com