CSE 20 Lecture 9 Boolean Algebra: Theorems and Transformations - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

CSE 20 Lecture 9 Boolean Algebra: Theorems and Transformations

Description:

CSE 20 Lecture 9 Boolean Algebra: Theorems and Transformations CK Cheng * Theorems & Proofs: 4 Postulates P1: a+b = b+a, a b=b a (commutative) P2: a+bc = (a+b) (a ... – PowerPoint PPT presentation

Number of Views:76
Avg rating:3.0/5.0
Slides: 13
Provided by: Die76
Learn more at: https://cseweb.ucsd.edu
Category:

less

Transcript and Presenter's Notes

Title: CSE 20 Lecture 9 Boolean Algebra: Theorems and Transformations


1
CSE 20 Lecture 9Boolean Algebra Theorems and
Transformations
  • CK Cheng

2
Theorems Proofs4 Postulates
  • P1 ab ba, abba (commutative)
  • P2 abc (ab)(ac) (distributive)
  • a(bc) ab ac
  • P3 a0a, a1 a (identity)
  • P4 aa1, aa 0 (complement)

3
  • Theorem 6 (Involution Laws)
  • For every element a in B, (a')' a
  • Proof a is one complement of a'.
  • The complement of a' is unique.
  • Thus a (a').
  • Theorem 7 (Absorption Law) For every pair a,b in
    B, a(ab) a a ab a.
  • Proof a(ab)
  • (a0)(ab) (P3)
  • a0b (P2)
  • a 0 (P3)
  • a (P3)

4
Theorems and Proofs
  • Theorem 8 For every pair a, b in B
  • a ab a b a(a b) ab
  • Proof a ab
  • (a a)(a b) (P2)
  • (1)(a b) (P4)
  • a b (P3)

5
Theorem 9 De Morgans Law
  • Theorem For every pair a, b in set B
  • (ab) ab, and (ab) ab.
  • Proof We show that ab and ab are
    complementary.
  • In other words, we show that both of the
    following are true (P4)
  • (ab)(ab) 1, (ab)(ab) 0.

6
Theorem 9 De Morgans Law (cont.)
Proof (Continue) (ab)(ab) (aba)(abb)
(P2) (1b)(a1) (P4) 1 (Theorem 3)
(ab)(ab) (ab)(ab) (P1) abaabb
(P2) 0ba0 (P4) 00 (Theorem 3) 0 (P3)
7
3. Theorems Switching Algebra vs. Multiple
Valued Boolean Algebra
  • Boolean Algebra is termed Switching Algebra when
    B 0, 1
  • When B gt 2, the system is multiple valued.
  • Example M (0, 1, 2, 3), ,

0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3
0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3
8
  • iClicker M (0, 1, 2, 3), ,
  • Boolean algebra can have only two elements 0,
    1.
  • The identity elements are 0 and 3
  • a 0 a
  • a 3 a
  • C. The complement of 1 is 2
  • Two of the above
  • None of the above.

0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3
0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3
9
  • Example M (0, 1, 2, 3), ,
  • P1 Commutative Laws
  • a b b a
  • a b b a
  • P2 Distributive Laws
  • a (b c) (a b) ( a c)
  • a (b c) (a b) (a c)
  • P3 Identity Elements
  • a 0 a
  • a 3 a
  • P4 Complement Laws
  • a a 3
  • a a 0

0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3
0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3
10
Boolean Transform
  • Given a Boolean expression, we reduce the
    expression (literals, terms) using laws and
    theorems of Boolean algebra.
  • When B0,1, we can use tables to visualize the
    operation.
  • The approach follows Shannons expansion.
  • The tables are organized in two dimension space
    and called Karnaugh maps.

11
4. Boolean Transformations
  • Show that ababab ab
  • Proof 1 ababab ab(aa)b P2
  • ab b
    P4
  • a b
    Theorem 8
  • Proof 2 ababab
  • abababab Theorem 5
  • ab ab abab P1
  • a(bb) (aa)b P2
  • a1 1b
    P4
  • a b
    P3

12
Boolean Transformation
  • (abc)(ab)(bac)
  • (abc)(ab)(b(ac)) (DeMorgans)
  • (abc)(ab)b(ac) (DeMorgans)
  • (abc)b(ac) (Absorption)
  • (abbbc)(ac) (P2)
  • (0bc)(ac) (P4)
  • bc(ac) (P3)
  • abcbcc (P2)
  • abc0 (P4)
  • abc (P3)
Write a Comment
User Comments (0)
About PowerShow.com