AKSIYON POTANSIYEL - PowerPoint PPT Presentation

1 / 74
About This Presentation
Title:

AKSIYON POTANSIYEL

Description:

AKS YON POTANS YEL Dr. Ay e DEM RKAZIK Organizmada iyonlar n da l m H cre d ortam Na+ ve Cl- iyonlar ndan H cre i i ortam K+ iyonlar ndan ... – PowerPoint PPT presentation

Number of Views:74
Avg rating:3.0/5.0
Slides: 75
Provided by: Aykut
Category:

less

Transcript and Presenter's Notes

Title: AKSIYON POTANSIYEL


1
AKSIYON POTANSIYEL
Dr. Ayse DEMIRKAZIK
2
Organizmada iyonlarin dagilimi
  • Hücre disi ortam Na ve Cl- iyonlarindan
  • Hücre içi ortam K iyonlarindan zengindir
  • Ayrica hücre içinde asla hücreyi terk edemeyen
    negatif yüklü protein anyonlar vardir
  • Normal hücre zari Ka Na a 100 kat daha
    geçirgendir

3
Nernst (denge) potansiyeli
  • Iyonlarin konsantrasyon gradyanlarini elektriksel
    olarak ifade eder
  • Difüzyon potansiyeli ile konsantrasyon farkinin
    iliskisine dayanir
  • Membranin iki tarafindaki potansiyel farki, bir
    iyonun membrandan bir yönde net difüzyonunu
    önleyecek düzeyde ise, bu potansiyele o iyon için
    Nernst potansiyeli denir

4
Na, K ve Cl- için Nernst
  • Hücre içi 90mV olmak üzere sadece sodyumun net
    difüzyonunun durmasi için içerideki potansiyelin
    61.5mV olmasi gerekir
  • Yani membranla en büyük problemi sodyum
    yasamaktadir

5
Temel potansiyel mantigi
  • K ve Clun Nernst denge potansiyelleri istirahat
    potansiyeline çok yakindir
  • Bu nedenle membrani rahatlikla geçebilirler

6
Denge potansiyelleri
  • Memeli spinal motor nöronuna ait degerler

7
Membran potansiyelinin siniri
  • Membrandan uzak yerlerde yükler tamamen birbirine
    esittir
  • Elektriksel potansiyel farki tamamen membranin
    iki tarafinda ortaya çikar

8
Membran potansiyelinin olusmasi için
  • Membranin iki tarafinda farkli konsantrasyonlarda
    iyonlarin bulunmasi
  • Membranin iyonlara seçici geçirgenlik göstermesi
    (K/Na100)
  • Her bir iyonun elektriksel yükünün çesidi

9
Gibbs-Donnan Dengesi
  • Membranin bir tarafinda membrandan geçemeyen iyon
    bulundugu zaman, geçebilen iyonlarin dagilimini
    etkiler

10
Na-K pompasi
  • Hücrelerde devamli bir Na-K sizmasi söz
    konusudur.
  • Bu devam ederse hücre siser ve ölür.
  • Pompa enerji harcayarak 3Na-2K prensibi ile
    çalisir.

11
Membran dinlenim potansiyeli
  • Iyonlarin farkli dagilimi
  • Membranin seçici geçirgenligi
  • Donnan dengesi
  • Na-K pompasinin özelligi sayesinde bir dengeye
    ulasir

12
sonuç
  • Membrandan uzak bölgelerde tamamen bir iyonik
    denge mevcuttur
  • Membranin her iki tarafinda konsantrasyonlari
    farkli iyonlar vardir
  • Membran seçici geçirgendir ve geçirgenlikleri
    farklidir
  • Bazi hücre içi anyonlar membrani geçemezler
  • Na-K pompasi diye bir sey vardir

13
Aksiyon potansiyeli
  • Laboratuar ortaminda elektriksel olan uyari
  • Organizmada
  • Elektriksel,
  • Hormonal,
  • Mekanik ve
  • Kimyasal
  • uyaranlarla olur

14
Neurons (Nerve Cells)
Figure 11.4b
15
Istirahat halinin bozulmasi
  • Iç kisim disa göre daha negatif (-70/-90mV)
  • Yeterli büyüklükte uyaran
  • Kritik degere kadar depolarizasyon
  • Aksiyon potansiyeli

16
(No Transcript)
17
Membran ve Sodyum
  • Yeterli büyüklükte uyaran
  • Membranin Na iyonlarina karsi geçirgenliginde
    voltaja bagli artis (aktivasyon)
  • Voltaja bagli inaktivasyon

18
Esik deger yoksa AP de yokhep ya da hiç
  • Hücre membranini esik degere kadar depolarize
    edemeyen uyaranlar AP olusturamaz
  • Esik ya da esik üstü uyaranlar da daima ayni
    genlik ve sekle sahip AP olusturur

19
Aslinda ne oldu?
  • Istirahat halinde membran temel olarak K
    iyonlarina karsi yüksek geçirgenlik gösterir
  • Bu nedenle istirahat potansiyeli K denge
    potansiyeline yakindir
  • Esik degere kadar depolarize edildiginde
  • Naa karsi olan membran geçirgenliginde
    milisaniyelerle sinirli bir artis ortaya çikar
  • Membran Naun denge potansiyeline dogru çekilir
    yani membran pozitif degerlere dogru hizla
    depolarize olur

20
Geriye dönüs- Repolarizasyon
  • Depolarizasyon ile denge durumundan uzaklasan K,
    membrani tekrar kendi dinlenim potansiyeline
    dogru tasimak için
  • Hücre disina akar
  • Bu sayede membran tekrar K membrani karakterini
    kazanir

21
AP dönemleri
  • Dinlenim (istirahat) dönemi
  • Depolarizasyon dönemi
  • Repolarizasyon dönemi
  • Hiperpolarizasyon dönemi

22
Hodgkin çemberi
  • feed back bir olaydir
  • Esik degere ulastiktan sonra hizla içeri giren
    Na, voltaji daha da yukarilara çeker
  • Voltaj yükseldikçe daha fazla Na içeri akar, daha
    fazla Naun içeri akmasi voltaji daha da
    yukarilara tasir

23
Hodgkin çemberi
24
Kanallarin zamanlamalari
25
Herkese lazim kanallar
  • Na-K sizma kanallari
  • Voltaj kapili Na kanallari
  • Voltaj kapili K kanallari
  • Voltaj kapili Ca-Na kanallari

26
Aksiyon potansiyeline katkilar
  • Pek çok hücre Na-K pompasina benzer bir Na-Ca
    pompasina sahiptir.
  • Pompa, kalsiyumu hücre içinden disina ve/veya
    endoplazmik retikuluma pompalar.
  • Bu pompa sayesinde hücre içi ile disi arasinda
    disarda fazla olmak üzere 10 000 katlik bir
    gradiyent yaratilir.
  • Bu sayede hücre içi kalsiyumu 10-7 molarda
    tutulurken, hücre disinda 10-3 molarda tutulur.

27
Bir gariplik var!!!
  • Membran potansiyeli istirahat durumuna geri
    döndügünde her sey normal degildir.
  • Na-K iyonlarinin yerleri terstir.
  • YASASIN POMPA!!!

28
Yeniden uyarilma-Reeksitasyon
  • Mutlak refrakter periyod
  • Voltaj kapili Na kanallarinin yapisi ile ilgili
    bir durumdur
  • APden sonra yeniden açilabilmeleri için mutlaka
    baslangiç konumlarina dönmeleri gerekir
  • Relatif refrakter periyod
  • Esik üstü uyaranlarla AP meydana gelebilir

29
Saniyenin dilimlerinde...
  • Çok kisa süre içinde,
  • Çok hizli bir sekilde,
  • Iletisim kurmanin,
  • bilgi alma,
  • yorumlama ve
  • gerekli cevaplarin iletmesinin en iyi yolu...

Aksiyon potansiyeli Iyi fikir!!!
30
Operation of a Gated Channel
Figure 11.6a
31
Operation of a Voltage-Gated Channel
32
Gated Channels
  • When gated channels are open
  • Ions move quickly across the membrane
  • Movement is along their electrochemical gradients
  • An electrical current is created
  • Voltage changes across the membrane

33
Electrochemical Gradient
  • Ions flow along their chemical gradient when they
    move from an area of high concentration to an
    area of low concentration
  • Ions flow along their electrical gradient when
    they move toward an area of opposite charge
  • Electrochemical gradient the electrical and
    chemical gradients taken together

34
Resting Membrane Potential (Vr)
  • The potential difference (70 mV) across the
    membrane of a resting neuron
  • It is generated by different concentrations of
    Na, K, Cl?, and protein anions (A?)
  • Ionic differences are the consequence of
  • Differential permeability of the neurilemma to
    Na and K
  • Operation of the sodium-potassium pump

35
Resting Membrane Potential (Vr)
Figure 11.8
36
Membrane Potentials Signals
  • Used to integrate, send, and receive information
  • Membrane potential changes are produced by
  • Changes in membrane permeability to ions
  • Alterations of ion concentrations across the
    membrane
  • Types of signals graded potentials and action
    potentials

37
Changes in Membrane Potential
  • Changes are caused by three events
  • Depolarization the inside of the membrane
    becomes less negative
  • Repolarization the membrane returns to its
    resting membrane potential
  • Hyperpolarization the inside of the membrane
    becomes more negative than the resting potential

38
Changes in Membrane Potential
Figure 11.9
39
Graded Potentials
  • Short-lived, local changes in membrane potential
  • Decrease in intensity with distance
  • Their magnitude varies directly with the strength
    of the stimulus
  • Sufficiently strong graded potentials can
    initiate action potentials

40
Graded Potentials
Figure 11.10
41
(No Transcript)
42
Graded Potentials
  • Voltage changes in graded potentials are
    decremental
  • Current is quickly dissipated due to the leaky
    plasma membrane
  • Can only travel over short distances

43
Conduction of Action Potentials
Figure 8-14a Conduction of action potentials
44
Conduction of Action Potentials
Figure 8-14b Conduction of action potentials
45
Conduction of Action Potentials
Figure 8-14c Conduction of action potentials
46
Speed of Conduction
  • Larger diameter faster conduction
  • Myelinated axon faster conduction
  • Salutatory conduction
  • Disease damage to myelin
  • Chemicals that block channels
  • Alteration of ECF ion concentrations

47
Speed of Conduction
Figure 8-16b Axon diameter and speed of
conduction
48
Speed of Conduction
Figure 8-17 Saltatory conduction
49
Graded Potentials
Figure 11.11
50
Action Potentials (APs)
  • A brief reversal of membrane potential with a
    total amplitude of 100 mV
  • Action potentials are only generated by muscle
    cells and neurons
  • They do not decrease in strength over distance
  • They are the principal means of neural
    communication
  • An action potential in the axon of a neuron is a
    nerve impulse

51
Action Potential Resting State
  • Na and K channels are closed
  • Leakage accounts for small movements of Na and
    K
  • Each Na channel has two voltage-regulated gates
  • Activation gates closed in the resting state
  • Inactivation gates open in the resting state

Figure 11.12.1
52
Action Potential Depolarization Phase
  • Na permeability increases membrane potential
    reverses
  • Na gates are opened K gates are closed
  • Threshold a critical level of depolarization
    (-55 to -50 mV)
  • At threshold, depolarization becomes
    self-generating

53
Action Potential Repolarization Phase
  • Sodium inactivation gates close
  • Membrane permeability to Na declines to resting
    levels
  • As sodium gates close, voltage-sensitive K gates
    open
  • K exits the cell and internal negativity of
    the resting neuron is restored

54
Action Potential Hyperpolarization
  • Potassium gates remain open, causing an excessive
    efflux of K
  • This efflux causes hyperpolarization of the
    membrane (undershoot)
  • The neuron is insensitive to stimulus and
    depolarization during this time

55
Action Potential Role of the Sodium-Potassium
Pump
  • Repolarization
  • Restores the resting electrical conditions of the
    neuron
  • Does not restore the resting ionic conditions
  • Ionic redistribution back to resting conditions
    is restored by the sodium-potassium pump

56
Phases of the Action Potential
  • 1 resting state
  • 2 depolarization phase
  • 3 repolarization phase
  • 4 hperpolarization

57
Propagation of an Action Potential (Time 0ms)
  • Na influx causes a patch of the axonal membrane
    to depolarize
  • Positive ions in the axoplasm move toward the
    polarized (negative) portion of the membrane
  • Sodium gates are shown as closing, open, or closed

58
Propagation of an Action Potential (Time 0ms)
59
Propagation of an Action Potential (Time 1ms)
  • Ions of the extracellular fluid move toward the
    area of greatest negative charge
  • A current is created that depolarizes the
    adjacent membrane in a forward direction
  • The impulse propagates away from its point of
    origin

60
Propagation of an Action Potential (Time 1ms)
61
Propagation of an Action Potential (Time 2ms)
  • The action potential moves away from the stimulus
  • Where sodium gates are closing, potassium gates
    are open and create a current flow

62
Propagation of an Action Potential (Time 2ms)
63
Threshold and Action Potentials
  • Threshold membrane is depolarized by 15 to 20
    mV
  • Established by the total amount of current
    flowing through the membrane
  • Weak (subthreshold) stimuli are not relayed into
    action potentials
  • Strong (threshold) stimuli are relayed into
    action potentials
  • All-or-none phenomenon action potentials either
    happen completely, or not at all

64
Coding for Stimulus Intensity
  • All action potentials are alike and are
    independent of stimulus intensity
  • Strong stimuli can generate an action potential
    more often than weaker stimuli
  • The CNS determines stimulus intensity by the
    frequency of impulse transmission

65
Coding for Stimulus Intensity
  • Upward arrows stimulus applied
  • Downward arrows stimulus stopped

66
Coding for Stimulus Intensity
  • Length of arrows strength of stimulus
  • Action potentials vertical lines

67
Absolute Refractory Period
  • Time from the opening of the Na activation gates
    until the closing of inactivation gates
  • The absolute refractory period
  • Prevents the neuron from generating an action
    potential
  • Ensures that each action potential is separate
  • Enforces one-way transmission of nerve impulses

68
Absolute Refractory Period
69
Relative Refractory Period
  • The interval following the absolute refractory
    period when
  • Sodium gates are closed
  • Potassium gates are open
  • Repolarization is occurring
  • The threshold level is elevated, allowing strong
    stimuli to increase the frequency of action
    potential events

70
Conduction Velocities of Axons
  • Conduction velocities vary widely among neurons
  • Rate of impulse propagation is determined by
  • Axon diameter the larger the diameter, the
    faster the impulse
  • Presence of a myelin sheath myelination
    dramatically increases impulse speed

71
Saltatory Conduction
  • Current passes through a myelinated axon only at
    the nodes of Ranvier
  • Voltage-gated Na channels are concentrated at
    these nodes
  • Action potentials are triggered only at the nodes
    and jump from one node to the next
  • Much faster than conduction along unmyelinated
    axons

72
Saltatory Conduction
Figure 11.16
73
Multiple Sclerosis (MS)
  • An autoimmune disease that mainly affects young
    adults
  • Symptoms include visual disturbances, weakness,
    loss of muscular control, and urinary
    incontinence
  • Nerve fibers are severed and myelin sheaths in
    the CNS become nonfunctional scleroses
  • Shunting and short-circuiting of nerve impulses
    occurs

74
Multiple Sclerosis Treatment
  • The advent of disease-modifying drugs including
    interferon beta-1a and -1b, Avonex, Betaseran,
    and Copazone
  • Hold symptoms at bay
  • Reduce complications
  • Reduce disability
Write a Comment
User Comments (0)
About PowerShow.com