DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE - PowerPoint PPT Presentation

1 / 13
About This Presentation
Title:

DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE

Description:

DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel_at_Physik.uni-frankfurt.de (+49) 069 / 798-47119 – PowerPoint PPT presentation

Number of Views:111
Avg rating:3.0/5.0
Slides: 14
Provided by: mkoz1
Category:

less

Transcript and Presenter's Notes

Title: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE


1
DEVELOPMENT OF THE CBM-MVDTHE PROTOTYPE
  • Michal Koziel
  • on behalf of CBM-MVD collaboration

Michal.Koziel_at_Physik.uni-frankfurt.de
(49) 069 / 798-47119
2
The MVD required performances
  • CBM-MVD will
  • improve secondary vertex resolution
  • host highly granular silicon pixel sensors
    featuring fast read-out, excellent spatial
    resolution and robustness to radiation
    environment.

See P.Senger introduction
Required performances (SIS-100) Required performances (SIS-100)
Radiation tolerance gt 1013neq/cm2 gt3 MRad
Read-out speed gt 30 kframes/s
Intrinsic resolution lt 5 µm
Operation in vacuum Operation in vacuum
Light support and cooling Material budget 0.3 X0
3
Research fields towards the MVD
Sensor development
Radiation tolerance
Support cooling
System integration
M.Winter
Front-End Electronics
Main challenges
  • Provide fast and radiation tolerant sensor
    featuring low material budget
  • Develop sensor readout system capable to handle
    high data rates

J.Stroth
  • Provide cooling and support with low material
    budget

4
Progress towards the MVD
Prototype
Demonstrator
4 sensors
½ of 1st station
Final
...will meet all requirements
2012
2010
2008
Sensor MIMOSA-20 200 frames/s few 1011 neq/cm2
300 kRad 750µm thick
Sensor MIMOSA-26 AHR 10 kframes/s 1013 neq/cm2
gt300 kRad 50µm thick
Sensor MIMOSIS-1 (diff. geometry)
Readout speed 30 kframes/s
2015
Radiation tol. gt1013 neq/cm2 gt3 MRad
Readout CP/digital/high data rates
Readout Serial/analog
Cooling support CVD diamond
Cooling support TPGRVC foam
Material budget 2.45 X0
Material budget 0.3 X0
5
Sensors for the MVD prototype
MIMOSA-26 AHR 0.35µm process High Resistivity
(HR) EPI (400O?cm)
21.2 x 10.6 mm2 18.4 µm pixel pitch
Main features - in pixel amplification -
comparator for each column - 0 suppression
logic - pitch 18.4 µm 0.7 million pixels
Achieved performances MIMOSA-26 AHR (2009) 1 Design goals (SIS-100) MIMOSIS-1 (2015)
Radiation tolerance 1013neq/cm2 gt300 kRad 1013neq/cm2 gt3 MRad
Read-out speed 10 kframes/s gt30 kframes/s
Intrinsic resolution 3.5 µm lt 5 µm
Material budget 0.05 X0 (50µm Si) 0.05 X0 (50µm Si)
Extensively studied at IKF 1 M.Deveaux
Radiation tolerance of a column parallel CMOS
sensor with high resistivity epitaxial layer,
accepted for publication in Journal Of
Instrumentation 2011
6
Readout concept for MVD prototype
Clk Start Reset JTAG
Driver board
FEB
CB
RCB
PEXOR
PC
PCI optical receiver
multiwire LVDS
5 x 800MBit/s multiwire LVDS
5 x 1GBit/s Optical Fibers
5 x 300MBit/s Optical Fibers
1 optical link
CBM DAQ
Powering LVDS drivers Current temperature
monitoring
Powering Latchup detection Current temperature
monitoring LVDS to Optical conversion
vacuum
Data reduction Time stamping Slow control Fast
control LVDS to Optical
Data reduction Time stamping Slow control Fast
control Data concentrator
Signal distribution Filtering
FEB Front End Board // CB Converter Board //
RCB Readout Controller Board
7
Low voltage distribution
  • Main objectives
  • On-line current monitoring
  • Latch-up detection handling (based on STAR
    solution)
  • Possibility to use radiation tolerant components
    (CERN)

Slow control
8
Mechanical design
Cooling
Cooling carrier

Heat Sink
Heat Sink
Carrier
- _at_ 20C , gt3000W/mK _at_-50C
Demonstrator
Prototype
Sensors thinned down to 50µm
750µm thick sensors
Material budget 2.45 X0
Material budget 0.35 X0
TPG - Thermal Pyrolitic Graphite RVC -
Reticulated Vitreous Carbon
9
Mechanical design
10
Improving connectivity and handling
 SERWIETE (SEnsor Row Wrapped In an
Extra Thin Envelope)
IMEC (Belgium) IKF Frankfurt IPHC Strasbourg
(sensors)
Radiation tolerance ? Reliability ? Thermal
cycles ? Real material budget ?
11
IKF Technology Lab
Digital Microscope Keyence VHX-600
Probe Station PA200 (Suss-Microtec)
Thermal imaging system (VarioCAM HiRes 640)
10-7 mBar vacuum chamber
12
Conclusions Summary
  1. The concept of the MVD read-out is defined
  2. The hardware components for MVD prototye have
    been delivered to the IKF
  3. Assembly and debugging in progress
  4. Software development is ongoing
  5. Lab tests to be performed
  6. In parallel software developments
  • Challanges
  • Deliver MIMOSIS-1 with required radiation
    tolerance readout speed for MVD
  • Most optimum read-out
  • Connectivity
  • Second station large area sensors

13
Thank you for your attention...
CBM-MVD Collaboration members Samir
Amar-Youcef, Norbert Bialas, Michael Deveaux,
Dennis Doering, Melissa Domachowski, Christina
Dritsa, Horst Düring, Ingo Fröhling, Tetyana
Galatyuk, Michal Koziel, Jan Michel, Boris
Milanovic, Christian Müntz, Bertram Neumann, Paul
Scharrer, Christoph Schrader, Selim Seddiki,
Joachim Stroth, Tobias Tischler, Christian
Trageser, Bernhard Wiedemann Jérome Baudot,
Grégory Bertolone, Nathalie Chon-Sen, Gilles
Claus, Claude Colledani, Andrei Dorokhov,
Wojchiech Dulinski, Marie Gelin-Galivel, Mathieu
Goffe, Abdelkader Himmi, Christine Hu-Guo, Kimmo
Jaaskelainen, Frédéric Morel, Fouad Rami, Mathieu
Specht, Isabelle Valin, Marc Winter
Write a Comment
User Comments (0)
About PowerShow.com