The Regional Ocean Modeling System (ROMS) 4D-Var Assimilation Systems applied to the California Current System - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

The Regional Ocean Modeling System (ROMS) 4D-Var Assimilation Systems applied to the California Current System

Description:

The Regional Ocean Modeling System (ROMS) 4D-Var Assimilation Systems applied to the California Current System Andy Moore, Gregoire Broquet, Hernan Arango, Chris ... – PowerPoint PPT presentation

Number of Views:446
Avg rating:3.0/5.0
Slides: 25
Provided by: andy254
Category:

less

Transcript and Presenter's Notes

Title: The Regional Ocean Modeling System (ROMS) 4D-Var Assimilation Systems applied to the California Current System


1
The Regional Ocean Modeling System (ROMS) 4D-Var
Assimilation Systems applied to the California
Current System
  • Andy Moore, Gregoire Broquet, Hernan Arango,
    Chris Edwards, Brian Powell, Milena Veneziani and
    Javier Zavala-Garay

Research Supported by NSF, ONR, NOPP
2
ROMS
  • Primitive equation, hydrostatic
  • Terrain-following vertical coordinates
  • Orthogonal curvilinear grids
  • Open boundaries
  • Comprehensive suite of numerical and physical
    options
  • Community model

3
ROMS 4D-Var
  • Incremental (linearize about a prior)
  • (Courtier et al, 1994)
  • Primal dual formulations (Courtier 1997)
  • Primal Incremental 4-Var (I4D-Var)
  • Dual PSAS (4D-PSAS) indirect representer
    (R4D-Var) (Da Silva et al, 1995 Egbert et al,
    1994)
  • Strong and weak (dual only) constraint
  • Preconditioned, Lanczos formulation of conjugate
    gradient (Lorenc, 2003 Tshimanga et al, 2008
    Fisher, 1997)
  • Diffusion operator model for prior covariances
    (Derber Bouttier, 1999 Weaver
    Courtier, 2001)
  • Multivariate balance for prior covariance (Weaver
    et al, 2005)
  • Physical and ecosystem components
  • Parallel

4
The Incremental Control Vector
fb(t), Bf
ROMS
bb(t), Bb
xb(0), B
State vector x(T,S,u,v,z)T Controls initial
conditions, x(0) surface
forcing, f(t) boundary
conditions, b(t)
5
The Incremental Control Vector
fb(t), Bf
ROMS
bb(t), Bb
xb(0), B
6
Primal vs Dual Formulation
Vector of increments
y
Observation vector
z
z
Primal Space
Dual Space
7
Primal vs Dual Formulation
ROMS has primal and dual 4D-Var options strong
vs weak constraint
Analysis
Gain (primal)
Gain (dual)
8
Primal vs Dual Formulation
Analysis
Gain (primal)
Gain (dual)
9
Primal vs Dual Formulation
The Lanczos formulation of the CG algorithm
lends considerable utility to 4D-Var
Analysis
Gain (primal)
Gain (dual)
Vp matrix of Lanczos vectors of the Hessian Vd
matrix of dual Lanczos vectors
10
Primal vs Dual Formulation
The Lanczos formulation of the CG algorithm
lends considerable utility to 4D-Var
Analysis
Gain (primal)
Gain (dual)
  • Posterior (analysis) error variance (dual)
  • Posterior (analysis) error EOFs (dual)
  • Observation impact (primal dual)
  • Observation sensitivity (dual)

11
ROMS California Current System (CCS)
COAMPS forcing ECCO open boundary conditions
30km, 10 km 3 km grids, 30- 42 levels
Veneziani et al (2009) Broquet et al (2009)
12
Observations (y)
CalCOFI GLOBEC/LTOP
SST SSH
Ingleby and Huddleston (2007)
TOPP Elephant Seals
ARGO
13
Observation Impact (37N transport, 0-500m)
7 day assim cycle (strong)
Transport Increment
Nobs
14
Observation Impact (37N transport, 0-500m)
7 day assim Cycle (strong)
Transport Increment
Nobs
15
Obs Impact vs Obs Sensitivity
Impact
Transport Increment
7 day assim cycle (strong)
Sensitivity based on adjoint of 4D-Var
Transport Increment
16
Obs Impact vs Obs Sensitivity
Impact
Transport Increment
7 day assim cycle (strong)
Sensitivity based on adjoint of 4D-Var
Transport Increment
17
Expected Posterior Error
SST
75m
18
Expected Posterior Error
SST
75m
Posterior variance Prior variance
19
Current Applications
20
(No Transcript)
21
Primal vs Dual Space (I4D-Var vs 4D-PSAS vs
R4D-Var)
1 - 4 July, 2000
(1 outer, 75 inner, Lh50 km, Lv30m, Obs
errors SSH 2 cm SST 0.4 C hydrographic 0.1 C
0.01psu)
Jmin
(Slow convergence of dual form also noted by El
Akkraoui and Gauthier, 2009)
July 2000 4 day assimilation window STRONG vs
WEAK CONSTRAINT
22
Jmin
i.c. initial condition wind wind stress Q
heat flux (E-P) freshwater flux b.c. open
boundary conditions
(R4DVAR 1 outer-loop 75 inner-loops)
23
ROMS 4D-Var in the CCS
no assim
4D-Var
forecast
24
ROMS 4D-Var Diagnostics
The Lanczos formulation of the CG algorithm
lends considerable utility to 4D-Var
Analysis
Gain (primal)
Gain (dual)
Vp matrix of Lanczos vectors of the Hessian Vd
matrix of dual Lanczos vectors
25
ROMS 4D-Var Diagnostics
The Lanczos formulation of the CG algorithm
lends considerable utility to 4D-Var
Analysis
Gain (primal)
Gain (dual)
  • Posterior/Analysis error variance (dual)
  • Posterior/Analysis error EOFs (dual)
  • Observation impact (primal dual)
  • Observation sensitivity (dual)

26
Assimilation impacts on CC
No assim
Time mean alongshore flow across
37N, 2000-2004 (30km)
IS4D-Var
(Broquet et al, 2009)
27
Analysis Increment upper 500 m Transport at 37N
5 11 April, 2003
Number of Obs
980 obs (6)
Nobs
NSST
NT
NS
NSSH
NT
NS
NT
NS
NT
XBT
CalCOFI
GLOBEC
ARGO
11 April, 2003
Sv
0.49Sv (63)
T
S
T
S
T
S
T
Total
SST
SSH
XBT
CalCOFI
GLOBEC
ARGO
Write a Comment
User Comments (0)
About PowerShow.com