Environmental%20effects%20on%20galaxy%20evolution%20and%20star%20formation - PowerPoint PPT Presentation

About This Presentation
Title:

Environmental%20effects%20on%20galaxy%20evolution%20and%20star%20formation

Description:

Veronique Buat, Jonathan Davies, Kate Isaak, Walter K Gear, ... R~1000 integrated spectroscopy (Balmer decrement, metallicity...) with CARELEC at the OHP ... – PowerPoint PPT presentation

Number of Views:104
Avg rating:3.0/5.0
Slides: 32
Provided by: alessandr57
Category:

less

Transcript and Presenter's Notes

Title: Environmental%20effects%20on%20galaxy%20evolution%20and%20star%20formation


1
HERSCHEL/SPIRE les programmes extragalactiques
-SAG2 Galaxies proches, échantillon de
référence -SAG1 Sondages profonds
V. Buat pour les SAG 1 2
2
SPIRE/HERSCHEL
SAG 2 LOW-Z EXTRAGALACTIC ASTRONOMY THE HERSCHEL
GALAXY REFERENCE SAMPLE Alessandro Boselli,
Steve Eales, Veronique Buat, Jonathan Davies,
Kate Isaak, Walter K Gear, Matt Griffin, Marc
Sauvage, Laurent Vigroux, Suzanne Madden, Koryo
Okumura, David Elbaz, Pierre Chanial, George
Bendo, Dave Clements, Mattia Vaccari, Frederic
Galliano, Jammie Bock, Seb Oliver, Matt Page,
Ismael Perez Fournon, Eli Dwek, Bernhard Schulz,
Luigi Spinoglio, Jason Stevens, Maarten Baes,
Werner Zeilinger, Christine Wilson
3
SPIRE/HERSCHEL THE HERSCHEL GALAXY REFERENCE
SAMPLE
Aim of the project to study the dust content and
distribution of normal galaxies 1) Dust plays
a principal role in the physics of the ISM and in
the process of SF in galaxies HI -gtH2 shields
the gas from the ISRF (UV radiation) cooling of
the gas produced and injected in the ISM by
massive stars 2) Major ingredient in the
determination of the extinction - energetic
balance (important for measuring SFR) 3)
Pollution of the intergalactic medium in
clusters 4) Reference sample for high z studies
4
Why SPIRE? the pick of the dust emission in
normal galaxies is 200 µm IRAS, ISO,
Spitzer, ASTRO-F lt 200 µm
Boselli et al 2003
5
Why SPIRE? although not important energetically,
cold dust is dominant in mass Cold dust
difficult to observe with SCUBA in normal
galaxies
Boselli et al 2003
6
SPIRE/HERSCHEL
 The Herschel galaxy reference survey
  • A representative sample of 300 galaxies in the
    nearby universe
  • distance range 15ltdistlt25 Mpc (to have a volume
    limited sample)
  • high galactic latitude (to avoid cirrus
    contamination) bgt54
  • -pointed observations of few tens of minutes per
    galaxy at 250, 360 520 µm

7
SPIRE/HERSCHEL
 The Herschel galaxy reference survey the sample
  • 2MASS K selected sources (to have a
    luminosity/mass selection)
  • 1) K lt 9 mag E S0 Spirals
  • 2) 9 lt Klt 12 mag to add late type systems with
    a large range of
  • luminosity and morphological
    type
  • ES0 down to 11 mJy -gt 104 Msun( dust)
  • Spirals down to 22 mJy -gt to detect dust in
    the outer disk, from standard gas to dust ratios
  • 313 selected galaxies, to be observed in 100 h

8
The whole sample Klt 9 mag 126 objetcs 9
lt Klt 12 mag 187 galaxies
9
The cluster sub-sample (Virgo Fornax) Klt 9
mag 36 galaxies 9 lt Klt 12 mag 40 galaxies
10
SPIRE/HERSCHEL
 The Herschel galaxy reference survey main
objectives
  • For galaxies of different type and luminosity
  • -Dust properties (mass, temperature, gas to dust
    ratio,..)
  • The role of dust in the physics of ISM (relation
    with SFR)
  • Spectral Energy Distribution
  • Effects of the environment on dust properties of
    nearby galaxies (clusters vs. field)
  • Intergalactic dust cycle
  • Dust properties in ellipticals merger history
    (dusty disks) and origin of dust in ellipticals
  • Local dust-mass function

11
SPIRE/HERSCHEL
 The Herschel galaxy reference survey corollary
data
  • Large surveys available or under way
  • UV from GALEX (1500-2300 A)
  • Visible from SDSS (u, g, r, I, z)
  • NIR from 2MASS (J, H, K)
  • radio continuum NVSS/FIRST (20 cm)
  • R1000 integrated spectroscopy (Balmer decrement,
    metallicity) with CARELEC at the OHP
  • Halpha imaging (SFR) with 2.1m telescope in San
    Pedro Martir (Mexico
  • Mid- and Far-IR (lt200 mic) from ASTRO-F
  • HI from HIPASS ALFALFA
  • -Westerbok/VLA HI for ellipticals
  • -CO survey of all galaxies without CO
    measurements(JCMT FCRAO)
  • -850 microns with SCUBA2
  • -Xrays from Chandra/XMM

12
SPIRE High-z
  • A wedding cake of blank field surveys
  • P.I. Seb Oliver

13
(No Transcript)
14
Resource by Institute
67 Individuals with average effort of 0.25 fte
per year
15
La participation française revue et corrigée
16
Resources by Country
17
Key science
  • How and when galaxies form
  • Search for unknown populations of high z IR
    galaxies
  • AGN versus SB, AGN fraction
  • Star formation rates

18
Summary of the GI proposal
  • 850 h awarded to the high-z team on SPIRE
  • Observations of blank fields and clusters with
    SPIRE PACS- 650 h for PACS
  • A single large project
  • A bolometric exploration of the star formation
    history of the Universe as a function of the
    environment
  • --gt 1500 hours on Herschel (SPIREPACS)

19
Why Herschel for the high z?
  • The emission of galaxies and of the cosmic
    background peaks around 60-200 microns --gt SCUBA
    or SPITZER do not probe the bulk of the emission
  • The aim of the proposal is to measure the
    bolometric IR emission of galaxies over a large
    range of z.

20
Areas, Depths, Fields
21
The wedding cake
  • Clusters-lensing
  • GOODs-S- 0.04deg2 4 mJy _at_
    350µm
  • GOODS-N- 0.04 deg2 8 mJy _at_ 350
    µm
  • GOODS-Groth Strip-Lockman
  • 0.75 deg 2 13 mJy _at_ 350 µm
  • COSMOS-XMM- 4 deg2 26 mJy _at_ 350 µm
  • XMM-Lockman-CDFS- 10 deg2 29 mJy _at_ 350 µm
  • SWIRE- 50 deg2- 74 mJy _at_
    350 µm

22
L(bol)-z plane sampled by the surveys
23
Confusion limits (at 5?)
  • 250 microns 20 mJy, FWHM 17 arcsec, 1800
    sources/sq.deg
  • 350 microns 19 mJy, FWHM 24 arcsec, 945
    sources/sq.deg
  • 500 microns 19 mJy, FWHM 35 arcsec, 420
    sources/sq.deg

24
Observations of clusters
  • z0.2 to gt 1
  • Using gravitational lensing to go below the
    confusion limit
  • 50 of the unresolved background might be
    identified with specific galaxies (against 10
    without lensing)
  • 15 (?) clusters to be observed
  • Modelling in progress based on the SPIZER
    analyses of Dole et al. 2006

25
  • Science Goals
  • Key Science Goals
  • Agreed before hand
  • Coordinated by individual or small team
  • Distributed effort through workflows
  • Specific Papers identified
  • Secondary Science Goals
  • Less managed
  • Open process
  • Schedule tied to data release cycle

26
Data Products
  • Primary Data Products
  • SPIRE Points Source Catalogues (P1)
  • SPIRE Maps (P2/P3)
  • PACS Point Source Catalogues (P1)
  • PACS Maps (P2/3)
  • Secondary Data Products (best efforts)
  • SPIRE/PACS band-merge (P2/P3)
  • X-ID lists (P3)
  • Key Complementary/Follow-up Data
  • Various.(P3)
  • Secondary Complementary/Follow-up Data (Not
    released)

27
Time-table (Launch to DR1)
Data, Valid. Sci.
Perhaps too tight
28
Merci pour votre attention
29
Prédictions des modèles(Lagache, Puget Dole)
Redshift distributions
15 mJy _at_ 350 mu (100 deg2)
100 mJy (400 deg2)
Number counts
30
CIB analysis
  • Confusion will prevent the detection of
    individual sources at high z
  • Stacking technique based on a priori information
    from PACS and/or SPITZER
  • Fluctuations analysis

31
Data processing and releases
  • Phase 0 checking that the science goals will be
    achieved, optimization of the tools
  • Phase 1 quickly after the end of the
    observations (). For the best observations,
    reduction and release to the Herschel community.
    SPG pipeline used. Optimized tools validated and
    released to the Herschel community
  • Phase 2 main stage. All the data are processed
    with optimized pipelines, band-merging,
    multi-wavelength catalogs. Specific analyses
    extended sources, diffuse emission, P(D).
    Released to the Herschel community
  • Phase 3 final archiving, follow-up data
    combined. First scientific papers.
Write a Comment
User Comments (0)
About PowerShow.com