E-169: Wakefield Acceleration in Dielectric Structures The proposed experiments at FACET - PowerPoint PPT Presentation

About This Presentation
Title:

E-169: Wakefield Acceleration in Dielectric Structures The proposed experiments at FACET

Description:

E-169: Wakefield Acceleration in Dielectric Structures. The proposed experiments at FACET ... Helium-cooled bolometer. Michelson interferometer for autocorrelation ... – PowerPoint PPT presentation

Number of Views:51
Avg rating:3.0/5.0
Slides: 28
Provided by: JamesRos4
Category:

less

Transcript and Presenter's Notes

Title: E-169: Wakefield Acceleration in Dielectric Structures The proposed experiments at FACET


1
E-169 Wakefield Acceleration in Dielectric
StructuresThe proposed experiments at FACET
  • J.B. Rosenzweig
  • UCLA Dept. of Physics and Astronomy
  • FACET Review February 19, 2008

2
E169 Collaboration
  • H. Badakov?, M. Berry?, I. Blumenfeld?, A. Cook?,
    F.-J. Decker?, M. Hogan?, R. Ischebeck?, R.
    Iverson?, A. Kanareykin?, N. Kirby?, P. Muggli?,
    J.B. Rosenzweig?, R. Siemann?, M.C. Thompson?,
    R. Tikhoplav?, G. Travish?, D. Walz?
  • ?Department of Physics and Astronomy, University
    of California, Los Angeles
  • ?Stanford Linear Accelerator Center
  • ?University of Southern California
  • ?Lawrence Livermore National Laboratory
  • ?Euclid TechLabs, LLC
  • Collaboration spokespersons

UCLA
3
E-169 Motivation
  • Take advantage of unique experimental opportunity
    at SLAC
  • FACET ultra-short intense beams
  • Advanced accelerators for high energy frontier
  • Very promising path dielectric wakefields
  • Extend successful T-481 investigations
  • Dielectric wakes gt10 GV/m
  • Complete studies of transformational technique

4
Colliders and the energy frontier
  • Colliders uniquely explore energy frontier
  • Expl growth in equivalent beam energy w/time
  • Livingston plot Moores Law for accelerators
  • We are now falling off plot!
  • Challenge in energy, but not onlyluminosity as
    well
  • How to proceed to linear colliders?
  • Mature present techniques
  • Discover new approaches

5
Meeting the energy challenge
  • Avoid gigantism
  • Cost above all
  • Higher fields implied
  • Higher fields give physics challenges
  • Linacs accelerating fields
  • Enter world of high energy density (HED) physics
  • Impacts luminosity challenge

6
HED in future colliders ultra-high fields in
accelerator
  • High fields in violent accelerating systems
  • High field implies high w
  • Relativistic oscillations
  • Limit peak power, stored energy
  • Challenges
  • Breakdown, dark current
  • Pulsed heating
  • Where is source lt 1 cm?
  • Approaches
  • Superconducting
  • High frequency, normal conducting
  • Lasers and/or plasma waves, or

7
Scaling the accelerator in size
  • Lasers produce copious power (J, gtTW)
  • Scale in size by 4 orders of magnitude
  • ? lt 1 ?m gives challenges in beam dynamics,
    loading
  • Reinvent the structure using dielectric (E163,
    Neptune)
  • To jump to GV/m, only need mm-THz
  • Must have new source

8
Possible new paradigm for high field
accelerators wakefields
  • Coherent radiation from bunched, vc e- beam
  • Any impedance environment
  • Powers next generation or exotic schemes
  • Plasma, dielectrics
  • Non-resonant, short pulse operation possible
  • High fields without breakdown?
  • Intense beams needed by other fields
  • X-ray FEL, X-rays from Compton scattering
  • THz sources for imaging with chemical signature

9
CLIC V.O. High gradients, high frequency, EM
power from wakefields
CLIC drive beam extraction structure
Power
10
Simpler approach Collinear dielectric wakefield
accelerator
  • Higher accelerating gradients GV/m level
  • Dielectric based, low loss, short pulse
  • Higher gradient than optical? Different breakdown
    mechanism
  • No charged particles in beam path field
    configuration simpler
  • Wakefield collider schemes
  • Modular system
  • Afterburner possibility
  • Spin-offs
  • THz radiation source
  • Imaging, acceleration

"Towards a Plasma Wake-field Acceleration-based
Linear Collider", J.B. Rosenzweig, et al., Nucl.
Instrum. Methods A 410 532 (1998)
11
Dielectric Wakefield AcceleratorElectromagnetic
characteristics
  • Electron bunch drives Cerenkov wake in
    cylindrical dielectric structure
  • Variations on structure features
  • Multimode excitation
  • Wakefields accelerate trailing bunch

  • Design Parameters

Ez on-axis, OOPIC
12
OOPIC Simulation Studies
  • Parametric scans
  • Heuristic model benchmarking
  • Analyze experiments
  • Field values
  • Beam dynamics
  • Radiation production

Multi-mode excitation (short bunch)
Single mode excitation (longer bunch)
Example scan, comparison to heuristic model
Fundamental ?
13
Experimental BackgroundArgonne / BNL experiments
?E vs. witness delay
  • Proof-of-principle experiments
  • (W. Gai, et al.)
  • ANL AATF
  • Mode superposition
  • (J. Power, et al. and S. Shchelkunov, et
    al.)
  • ANL AWA, BNL
  • Transformer ratio improvement
  • (J. Power, et al.)
  • Beam shaping
  • Tunable permittivity structures
  • For external feeding
  • (A. Kanareykin, et al.)

Gradients limited to lt50 MV/m by available beam
14
T-481 Test-beam exploration of breakdown
threshold
  • Leverage off E167
  • Existing optics, diagnostics, protocols
  • Goal breakdown studies
  • Al-clad fused silica fibers
  • ID 100/200 ?m, OD 325 ?m, L1 cm
  • Multi-photon v. tunneling ionization
  • Beam parameters predict 12 GV/m longitudinal
    wakes
  • 30 GeV, 3 nC, ?z 20 ?m
  • 48 hr FFTB run, Aug. 2005
  • Follow-on planned, no FFTB time
  • PRL on breakdown threshold produced

T-481 octopus chamber
15
T481 Beam Observations
  • Multiple tube assemblies
  • Alignment to beam path
  • Scanning of bunch lengths for wake amplitude
    variation
  • Excellent flexibility 0.5-12 GV/m
  • Vaporization of Al cladding use dielectric, more
    robust
  • Breakdown monitored by light emission
  • Correlations to post-mortem inspection

View end of dielectric tube frames sorted by
increasing peak current
16
Breakdown Threshold Observation
X-ray data yields bunch length, current
17
T-481 Inspection of Structure Damage
Damage consistent with beam-induced discharge
ultrashort bunch
Bisected fiber
longer bunch
Aluminum vaporized from pulsed heating!
Laser transmission test
18
Striking conclusions
  • Observed breakdown threshold (field from
    simulations)
  • Esurf gt13 GV
  • Eaccgt5 GV/m!
  • Much higher than laser data (1.1 GV/m for 100
    psec)
  • Tunneling ionization dominant
  • Multi-mode excitation gives effective shorter
    pulses?

19
E169 at FACET
  • Approved by SLAC EPAC 12/06
  • Research gtGV/m acceleration scheme in DWA
  • Push technique for next generation accelerators
  • Goals
  • Explore breakdown issues in detail
  • Varying tube dimensions
  • Change impedance, mode content
  • Breakdown dependence on wake pulse length
  • Determine usable field envelope
  • Coherent Cerenkov radiation measurements
  • Explore alternate materials (diamond, etc)
  • Observe acceleration
  • Explore alternate structure designs
  • Examine deflecting modes, transverse BBU
  • Push to modular DWA demonstration (1 m section)

20
E-169 at FACETHigh-gradient acceleration
researchGoals in 3 Phases
  • Phase 1 Complete breakdown study
  • Coherent Cerenkov (CCR) measurement
  • explore (a, b, ?z) parameter space
  • Alternate cladding
  • Alternate materials (e.g. diamond)
  • Explore group velocity effect

?z 20 ?m
?r lt 10 ?m
U 25 GeV
Q 3 - 5 nC
  • Total energy gives field measure
  • Harmonics are sensitive ?z diagnostic

21
E-169 at FACET Phase 2 3
  • Phase 2 Observe acceleration, explore new
    designs
  • 10 cm tube length
  • longer bunch, ?z 150 ?m
  • moderate gradient, 1 GV/m
  • single mode operation

?z 150 ?m
?r lt 10 ?m
U 25 GeV
Q 3 - 5 nC
  • Phase 3 Scale to 1 m fibers
  • Alignment
  • Group velocity EM exposure
  • Transverse BBU

Before after momentum distributions (OOPIC)
Ez on-axis
22
Experimental Issues THz Detection
  • Conical launching horns
  • Signal-to-noise ratio
  • Detectors
  • Impedance matching to free space
  • Direct radiation forward
  • Fabrication, test at UCLA Neptune
  • Background of CTR from tube end
  • SNR 3 - 5 for 1 cm tube
  • Pyroelectric
  • Golay cell
  • Helium-cooled bolometer
  • Michelson interferometer for autocorrelation

Autocorreation of coherent edge radiation at BNL
ATF, 120 fsec beam
23
Experimental Issues Alternate DWA design,
cladding, materials
A. Kanareykin
  • Aluminum cladding used in T-481
  • Dielectric cladding
  • Alternate dielectric CVD diamond
  • High breakdown threshold
  • Doping gives low SEC
  • Available for Phase I (Euclid)
  • Phase 2
  • Bragg fibers
  • 2D photonic band gap structures?
  • Vaporized at even moderate wake amplitudes
  • Low threshold from low pressure, thermal
    environment
  • Lower refractive index provides internal
    reflection
  • Low power loss, damage resistant

CVD deposited diamond
Bragg fiber
24
Alternate design Slab structure
  • Slab structure familiar from resonant laser idea
  • Suppresses BBU!
  • Ultra-short bunch means GV/m fields still
    obtainable

Example Ez 700 MV/m
25
E-169 at FACET Implementation/Diagnostics
  • New precision alignment vessel
  • Upstream/downstream OTR screens for alignment
  • X-ray stripe
  • CTR/CCR for bunch length
  • Imaging magnetic spectrometer
  • Beam position monitors and beam current monitors
  • Controls

Heavy SLAC involvement
Much shared with E168
26
E169 Game Plan and Timeline
Design, initial construction
Go
UCLA Neptune experiments
2008
2009
2010
2011
2012
27
Conclusions/directions
  • Extremely promising initial run
  • Collaboration/approach validated
  • Physics tantalizing new regime for dielectric
    acceleration must be explored
  • Unique opportunity to explore GV/m dielectric
    wakes at FACET
  • Flexible, ultra-intense beams
  • Only possible at SLAC FACET
  • Complementary low gradient experiments at Neptune
  • Conceptual, experimental, and personnel synergies
    with E168
Write a Comment
User Comments (0)
About PowerShow.com