Nucleation of Vortices in Superconductors in Confined Geometries - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

Nucleation of Vortices in Superconductors in Confined Geometries

Description:

Characteristics of vortex interaction. Geim: paramagnetic Meissner effect ... (L,N1,N2)=(0,2,7) at t = 0.14 (L,N)=(1,8) at t = 0. Vortex Configurations with 10 ... – PowerPoint PPT presentation

Number of Views:43
Avg rating:3.0/5.0
Slides: 24
Provided by: lbor1
Category:

less

Transcript and Presenter's Notes

Title: Nucleation of Vortices in Superconductors in Confined Geometries


1
Nucleation of Vortices in Superconductors in
Confined Geometries
  • W.M. Wu, M.B. Sobnack and F.V. Kusmartsev
  • Department of Physics
  • Loughborough University, U.K.
  • July 2007

2
  • Nucleation of vortices and anti-vortices
  • Characteristics of system
  • Nucleation of vortices
  • Physical boundary conditions
  • Characteristics of vortex interaction

3
  • Geim paramagnetic Meissner effect
  • Chibotaru and Melnikov anti-vortices,
    multi-quanta-vortices
  • Schweigert multi-vortex state ? giant vortex
  • Okayasu no giant vortex

A.K. Geim et al., Nature (London) 408,784
(2000). L.F. Chibotaru et al., Nature (London)
408,833 (2000). A.S. Melnikov et al., Phys. Rev.
B 65, 140501 (2002). V.A. Schweigert et al.,
Phys. Rev. Lett. 81, 2783 (1998). S. Okayasu et
al., IEEE 15 (2), 696 (2005).
4
Grigorieva et al., Phys. Rev. Lett. 96, 077005
(2006)
Total flux LF0
Applied H
Baelus et al. predictions different from
observations Phys. Rev. B 69, 0645061 (2004)
5
  • Theories at T 0K
  • Experiments at finite T ? 0K
  • This study extension of previous work to include
  • multi-rings and finite temperatures

6
Model
H Hk ??Aapp
R
HHc1
d
Local field B H
R lt ?2/d ?, d ltlt rc
7
T 0K
H gt Hc1 Vortices penetrate
Flux Fv qF0 , F0 hc/2e
H lt Hc1 Meissner effect
js
js
js -(c/4??2)A
js -(c/4??2)(A-Av)
8
Boundary condition normal component of js
vanishes
Method of images
ri (R2/r)ri
image anti-vortex
ri
Fi (r) qF0 /2?r
Fi
-Fi
Fi qF0
Av ?Fi (r-ri) - Fi (r-r'i)?
9
LF0
N2 vortices qF0
H
r1
r2
r1 lt r2
N1 vortices qF0
L gt 0 vortex L lt 0 anti-vortex
10
T 0 K
Gibbs free Energy
zi ri/R
11
(No Transcript)
12
a
13
Finite temperature T ? 0K
Gibbs free energy
SEntropy
Dimensionless Gibbs free energy
14
  • Minimise g(L,N1,N2,t) with respect to z1, z2
  • Grigorieva Nb
  • R 1.5nm, ?0 100nm
  • Tc 9.1K, tc 0.7
  • T 1.8K, t 0.14

(L, N1) a central vortex of flux LF0 at centre,
N1 vortices (F0) on ring z1 (L,N1,N2) a central
vortex, N1 vortices on z1 and N2 on z2
15
Results t 0 (T 0K)
16
(No Transcript)
17
Results t 0.14 (T 1.8K)
H60 Oe ? h20.5
18
(No Transcript)
19
Vortex Configurations with 9?0
(0,2,7)
(1,8)
20
Total flux 9?0
(L,N1,N2)(0,2,7) at t 0.14
(L,N)(1,8) at t 0
21
Vortex Configurations with 10?0
(1,9)
- - (0,3,7)
H 60 Oe ? h 20.5
(0,2,8)
22
Total flux 10?0
(L,N1,N2)(0,2,8) t 0.14
(L,N)(1,9) t 0
(L,N1,N2)(0,3,7) t 0.14
23
Conclusions and Remarks
  • Modified theory to include temperature
  • Results at t 0.14 in very good agreement with
    experiments of Grigorieva her group
  • Extension to gt 2 rings/shells
  • Underlying physics mechanisms
Write a Comment
User Comments (0)
About PowerShow.com