Departamento de Fsica Curso Electivo INTRODUCCIN A PELCULAS DELGADAS - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

Departamento de Fsica Curso Electivo INTRODUCCIN A PELCULAS DELGADAS

Description:

F sica de pel culas delgadas. Crecimiento de pel culas ... evanescent domain - k imaginary -Waves attenuated. 15. Electrodynamics: Dilute Plasmas ... – PowerPoint PPT presentation

Number of Views:49
Avg rating:3.0/5.0
Slides: 24
Provided by: pedrop9
Category:

less

Transcript and Presenter's Notes

Title: Departamento de Fsica Curso Electivo INTRODUCCIN A PELCULAS DELGADAS


1
Departamento de Física - Curso ElectivoINTRODUCCI
ÓN A PELÍCULAS DELGADAS
  • Física de películas delgadas
  • Crecimiento de películas
  • Caracterización de películas
  • Propiedades de películas

Segundo Período 2003 Profesora María Elena Gómez
2
Departamento de Física - Curso ElectivoINTRODUCCI
ÓN A PELÍCULAS DELGADAS
  • I Física de películas delgadas
  • 5. Física del Plasma

Segundo Período 2003 Profesora María Elena Gómez
3
Física de películas delgadas
Departamento de Física Curso Electivo INTRODUCCIÓN
A PELÍCULAS DELGADAS
  • 5. Física del plasma
  • Definición de Plasma
  • Electrostatics
  • Electrodynamics
  • Special case Dilute Plasmas
  • Special Case Dense Plasmas
  • Applications of plasmas
  • Plasma Sources

4
Crecimiento de películas
Departamento de Física Curso Electivo INTRODUCCIÓN
A PELÍCULAS DELGADAS
  • References
  • "Classical Electromagnetic Radiation" M. A. Heald
    and J. B. Marion
  • "Foundations of Electromagnetic Theory" J. R.
    Reitz, F. J. Milford and R. W. Christy
  • "Electromagnetic Fields and Waves" P. Lorrain, D.
    R. Corson, and R. Lorrain

5
Plasma Fundamentals
  • dilute ionized gas
  • (often at high temperature)
  • contains free electrons (light) and positive ions
    (heavy)
  • excellent conductor with current mainly carried
    by electrons
  • Usually we concentrate on the behavior of the
    electrons because they are more mobile
  • Creating a plasma
  • If we start with a gas of neutral atoms, we
    create a plasma by removing an electron from an
    atom, leaving a positive ion.
  • Since 1 eV corresponds to about 11,600 K, it is
    typically not practical to achieve ionization by
    thermal processes. Instead we rely on electron
    collisions with atoms.
  • electrons ionize by collision most effectively
    for energies around 100 eV

6
Plasma Typical ionization energies
7
Characterizing a plasma
  • characterize by temperature (energy), electron
    density (Ne) and particle density or neutral atom
    density (N)
  • cold plasma
  • particle energy of a few eV
  • typical of most thin film processes
  • hot plasma
  • particle energy of a few thousand eV
  • typical of nuclear fusion and some astrophysics
  • electron temperature often gt ion temperature
  • - especially in dilute plasmas

8
Characterizing a plasma
  • density
  • at pressure of 5 mTorr total particle density
    about 1013 particles/cm3
  • weakly ionized ion density electron density is
    about 108 ions/cm3
  • strongly ionized ion density electron density
    is about 1012 ions/cm3
  • These parameters are often grouped as follows
  • Debye length
  • distance over which significant charge separation
    can occur
  • ?D(cm) 743 (Te / Ne)1/2
  • with density in electrons / cm3
  • plasma frequency
  • to be derived shortly
  • ?p 56,548.67 Ne1/2
  • with density in electrons / cm3
  • critical degree of ionization
  • if Ne / N is much greater than this critical
    degree of ionization, the plasma behaves as
    though it is fully ionized
  • ?c 1.73 x 1012 ?eA Te2
  • - where ?eA is the electron-atom collision
    cross section in cm2
  • (typically 10-16 - 10-15)

9
Characterizing a plasma Electrostatics
  • charged particles in a constant Electric field
    (E) with no magnetic field (B 0)
  • When subjected to Electric field
  • charges redistribute
  • themselves to shield
  • the interior from the
  • fields
  • plasma region is field
  • free and approximately
  • neutral
  • for T 2000 K and N 1018 electrons/meter3,
    sheath thickness is about 1 micrometer

10
Characterizing a plasma Electrostatics (2)
  • electrons in a constant Magnetic Field (B) with
    no electric field (E0)
  • note electrons have a longer actual path length
    before reaching one side of the system gt more
    likely to ionize a neutral gas atom

11
Characterizing a plasma Electrostatics (3)
  • electrons in a uniform, constant E and B with E
    perpendicular to B
  • motion has three components
  • constant velocity vparallel in direction of B
  • gyration about the B field lines
  • constant drift velocity vd E/B perpendicular to
    E and B
  • note vd does not
  • depend on mass
  • or charge - so all
  • particles drift
  • together

12
Electrodynamics
  • Apply an oscillator model to electrons in the
    plasma
  • at low frequencies (lt50 kHz) ions and
    electrons both oscillate
  • at high frequencies (gt50 kHz) heavy ions can
    not follow switching fields gt only electrons
    oscillate while ions are relatively stationary
  • Examine forces on electrons
  • driving force from varying E field
  • no restoring force since electrons are not
    bound (spring constant 0) (not true if charge
    separation in plasma leads to electrostatic
    restoring forces)
  • damping term, ?, from collisions (this could
    be large)
  • ? collision frequency
  • consider effects of electromagnetic wave on
    plasma (with no static fields)
  • from F ma we can write down an equation of
    motion

13
Electrodynamics equation of motion

14
Electrodynamics Dilute Plasmas
  • Dilute few collisions ? small (ltlt?)
  • Two frequency regions
  • ? gt?p dielectric domain - k real no
    attenuation of waves
  • ? lt ? lt ?p evanescent domain - k imaginary
    -Waves attenuated

15
Electrodynamics Dilute Plasmas
  • When is a plasma dilute ?
  • criteria ? ltlt ? to put numbers in ? 0.01 ?
  • estimate collision frequency ? from kinetic
    theory of gasses

16
Electrodynamics Dilute Plasmas
  • When is a plasma dilute ?
  • Most plasmas in our processes are not dilute
  • reality check is the plasma frequency for these
    conditions greater than the incident frequency?

17
Electrodynamics Dilute Plasmas
  • reality check is the plasma frequency for these
    conditions greater than the incident frequency?

18
Electrodynamics Dense Plasmas
  • collisions between charged particles are common
  • electrons and ions are in thermal equilibrium
  • electrons and ions move together
  • equilibrium theory formulation of plasmas
  • particles maintain a Maxwell-Boltzmann velocity
    distribution
  • kinetic properties and transport properties of
    particles can be calculated from this

19
Applications of plasmas
  • cleaning / etching of surfaces
  • sputter deposition source
  • bombardment during deposition to modify film
  • activation of reactive gasses
  • Plasma Sources
  • plate electrodes
  • Inductively coupled plasma (ICP)
  • Helicon
  • Electron cyclotron resonance (ECR)

20
Plasma Sources
  • Plate electrodes
  • low plasma densities (109 - 1010 charged
    particles/cm3)
  • common in sputter deposition
  • discuss further during sputter deposition
  • Inductively coupled plasma (ICP)
  • high plasma densities (1011 - 1012 charged
    particles/cm3)
  • operates well at lower gas densities (lt 50 mTorr)
  • can be used up to atmospheric pressures (and
    beyond)
  • couple RF energy inductively into plasma (lossy
    electrical conductor produces more efficient
    ionization !

21
Plasma Sources
  • Helicon
  • high plasma densities (1011 - 1012 charged
    particles/cm3)
  • operates well at lower gas densities (lt 50 mTorr)
  • radiates RF energy into plasma for resonant
    absorption
  • produces more efficient ionization
  • Electron cyclotron resonance (ECR)
  • high plasma densities (1012 - 1013 charged
    particles/cm3)
  • operates well at lower gas densities (down to 0.1
    mTorr)
  • couples microwave energy to electrons by matching
    frequency to electron gyration frequency
  • ?c eB/me produces more efficient
    ionization
  • control the plasma density with microwave power
    and gas pressure
  • can also control ion species created (O2, O)

22
Plasma Sources
23
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com