KEK analysis 2 prototype SciFi tracker analysis - PowerPoint PPT Presentation

1 / 68
About This Presentation
Title:

KEK analysis 2 prototype SciFi tracker analysis

Description:

The structure of proto SciFi tracker. A. B. C. D. st B , st D : 3 view ... The center of SciFi tracker is not center of the coil. Magnetic field _at_center of coil ... – PowerPoint PPT presentation

Number of Views:21
Avg rating:3.0/5.0
Slides: 69
Provided by: wwwkunoP
Category:

less

Transcript and Presenter's Notes

Title: KEK analysis 2 prototype SciFi tracker analysis


1
KEK analysis 2prototype SciFi tracker analysis
  • Osaka University
  • Atsushi Horikoshi

2
contents
  • Basic information
  • Dead channel information
  • Noise rate
  • w/o magnetic field
  • Event slection
  • Npe distribution
  • position resolution
  • w/ magnetic field test
  • The procedure of helical fit
  • non uniformity of magnetic field
  • pz
  • pt
  • Appendix detail plots (page 34 page 68)

3
The structure of proto SciFi tracker
st B , st D 3 view st A , st C 2 view Total
10 view
Length 95cm
4
Checking scheme of dead channel
  • Counting numbers of dead channels
  • Dead channel No events over 2.5 p.e.
  • Dead is categorized by two
  • VLPC dead Also dead _at_ LED run
  • Fiber dead Alive _at_ LED run
  • Total dead channel VLPC dead Fiber dead
  • Fiber connection is based on Mapping table of
  • jp-map12.xls

5
VLPC dead
  • 40 channels were dead

6
AFE107,MCM8,CHAN1-32
  • Dead
  • -3GeV/c mag off , no rotate
  • 1255,1257,1259,1272,1273
  • 400MeV/c mag on , rotate 6
  • 1344,1346,1348,1350,1352
  • 400MeV/c mag on rotate 3
  • 1384,1386,1389,1391,1393,1395,1397,1399
  • 325MeV/c mag on , rotate 6
  • 1374,1376,1377,1379,1381,1382,1401,
  • 1403,1405,1407,1408,1410,1411,
  • 1334,1336,1338,1340,1342
  • 325MeV/c mag on , rotate 3
  • 1334,1336,1338,1340,1342
  • 250MeV/c mag on , rotate 6
  • 1318,1320,1322,1324,1326,1328,1330,1332
  • 250MeV/c mag on , rotate 3
  • 1356,1358,1360,1361,1363,1365,1367,1368,1370,1372
  • Alive
  • -3GeV/c rotate 6

7
Fiber dead
  • Fiber dead 2 fiber
  • Station D (new station) no dead fiber

8
Noise rate
  • ex)stationB Uview
  • of hit fibers/event

9
noise rate
  • noise rate of hit fiber/(event fiber)
  • therathold ex) st1 V view
  • Threathold 2.5p.e.

10
w/o magnetic field
  • Event selection
  • Npe distribution
  • Residual distribution
  • Position resolution

11
Event selection
  • Area cut for station B D
  • Hit event from ?

2
12
pe distribution
  • 3GeV/c , p
  • ex) station B V view

of event
Npe
13
pe distribution
  • Efficiency
  • Previous talk of KEK analysis
  • H.Sakamoto
  • ex)threathold2.5pe
  • station B X view96.0
  • stationD X view85.7
  • Decrase of Npe_at_ station D
  • Light loss Investigation
  • A.Fish

14
Residual distribution
  • p 3GeV/c , no magnetic field , w/o diffuser
    (run1255)
  • Plot procedure
  • Line fit using 3 stations w/o target st.
  • ex) targetstation B
  • line fit using station A,station C, and
    station D
  • Hit position-fit line _at_target st

-
15
Residual distribution
  • station D , x axis
  • SciFi pitch
  • left 0.420mm
  • right 0.427mm

RMS 0.74mm
RMS 1.21mm
  • station D 0.420mm or 0.427mm ? which is true ?

16
Residual distribution of station D
  • pitch0.420mm
  • x axis0.74mm , y axis0.55mm
  • pitch0.427mm
  • x axis1.21mm , y axis1.24mm
  • MC simulation
  • x axis0.64mm , y axis0.67mm
  • ?0.420mm pitch is true ?

17
Position resolution
  • position resolutin of target station
  • error of line fit

position resolution (mm)
18
w/ magnetic field
  • Time of Flight
  • The momentum distribution from TOF
  • SciFi tracker
  • pz analysis
  • pt analysis

19
s of Time of Flight
  • 3GeV/c, rotate 0 , p
  • s(TOF)60ps
  • 250MeV/c , rotate 3 , µ
  • s(µ)152ps , s(beam)140ps
  • 250MeV/c , rotate 6 , µ
  • s(µ)155ps , s(beam)143ps
  • 325MeV/c , rotate 3 , µ
  • s(µ)98ps , s(beam)78ps
  • 325MeV/c , rotate 6 , µ
  • s(µ)97ps , s(beam)76ps
  • 400MeV/c , rotate 3 , µ
  • s(µ)79ps , s(beam)51ps
  • 400MeV/c , rotate 6 , µ
  • s(µ)81ps , s(beam)54ps
  • plots of Time of Flight_at_appendix

20
Momentum distribution from TOF
  • ex)
  • µ 250MeV/c 3
  • Mean231.1MeV/c
  • s7.1MeV/c
  • Another plots
  • _at_appendix

Momentum(MeV/c)
21
Momentum distribution from TOF
  • 250MeV/c , rotate 3 , µ
  • s(momentum)7.1MeV/c
  • 250MeV/c , rotate 6 , µ
  • s(momentum)7.2MeV/c
  • 325MeV/c , rotate 3 , µ
  • s(momentum)11.2MeV/c
  • 325MeV/c , rotate 6 , µ
  • s(momentum)10.9MeV/c
  • 400MeV/c , rotate 3 , µ
  • s(momentum)18.8MeV/c
  • 400MeV/c , rotate 6 , µ
  • s(momentum)19.0MeV/c
  • plots from TOF_at_appendix

Red 3 Blue6
22
The procedure of tracking
  • Helical tracking in magnetic field5parameters
  • Fitting minuit
  • pzcBL , ptcBR B(T)

23
uniformity of magnetic field
  • The center of SciFi tracker is not center of the
    coil.
  • Magnetic field
  • _at_center of coil
  • B 0.8T 1T
  • We need to correct
  • non uniformity of magnetic field

station A
station B
station C
station D
24
The procedure of correction
  • Get the track from fitting.
  • (assume the perfect helical orbit)
  • Calculate the strength of magnetic fieled in each
    point.
  • We used the average stregth of magnetic field
    from the result of tracking.

25
The strength of magnetic field
  • The average strength of
  • Magnetic field.
  • The peak of B is 0.963T,
  • not 1T.
  • There are position
  • dependence (next page)
  • This plot is the result
  • of data analysis

0.96
0.98
1.00
B(T)
26
The position dependence of average B
  • The result of data analysis

27
The difference of analysis for B field
  • MC simulation
  • No multiple scattaring
  • Redinput pz
  • Blueaverage B
  • Black1T
  • The mean of average B is better than that of 1T.

250
pz(MeV/c)
28
The pz distribution
  • RMS of pz
  • 28MeV/c_at_250MeV/c
  • The input beam of MC is now tuning.

29
RMS of pz vs pt
  • 36 run , µ
  • Data analysis
  • pt Large gtgt pz RMS better
  • pz Small gtgt pz RMS better

30
pz RMS vs magnetic field(MC)
  • µ , 250MeV/c
  • pz RMS
  • non uniform
  • 28MeV/c
  • uniform
  • 23MeV/c
  • 4T
  • 8MeV/c

non uniform B
uniform B
31
The distribution of pt
  • µ , 250MeV/c
  • pt RMS9.8MeV/c

32
The acceptance of each region(MC)
  • Acceptancehit the all view / hit the TOF
  • Horizontal
  • Pt(MeV/c)
  • Vertical
  • Acceptance()
  • Almost 100 acceptance
  • for all pt is TOF3TOF8
  • region.

27
28
29
37
38
39
49
48
47
33
Summary
  • The dead channel are VLPC dead fiber dead
  • VLPC dead 40ch , fiber dead 2ch
  • There is no dead fiber in new station, station D.
  • The distribution of pe is not poisson.
  • The mean of pe
  • station A,B,C 8pe , station D 4.5pe
  • The residual distribution
  • station D the pitch is 0.42mm ?
  • The position resolution x axis 0.5mm , y axis
    0.4mm
  • Momentum distribution of TOF
  • s(momentum)7MeV/c19MeV/c
  • pz of the reconstruction
  • RMS28MeV/c_at_250MeV/c(data)?8MeV/c_at_250MeV/c(MC)
  • pt of the reconstruction
  • Acceptance only TOF3TOF8 region is 100
    acceptance.

34
Appendix more detail data
  • Basic information
  • Dead VLPC of AFE107,mcm8
  • w/o magnetic field test
  • Npe distribution of all view
  • Residual distribution of all station
  • w/ magnetic field test
  • Time of Flight momentum distribution from TOF
  • 250MeV/c , 325MeV/c , 400MeV/c
  • Residual distribution of all station
  • 250MeV/c , 325MeV/c , 400MeV/c

35
pt RMS vs magnetic field(MC)
  • µ , 250MeV/c
  • pt(track)-pt(true) RMS
  • non uniform
  • 1.9MeV/c
  • uniform
  • 1.7MeV/c
  • 4T
  • 0.6MeV/c

non uniform B
uniform B
36
Dead MCM
  • AFE2107 , mcm8 , ch1-32
  • st1w , fiber (AFE , mcm , ch)

37
Npe distribution of all view
  • 3GeV/c p
  • st1 V8.2pe
  • st1 X(U)7.2pe
  • st1 W8.3pe
  • st1stB

38
Npe distribution of all view
  • 3GeV/c p
  • st2 V7.8pe
  • st2 X(U)8.3pe
  • st3 X(U)8.4pe
  • st3 W8.7pe
  • st2stA
  • st3stC

39
Npe distribution of all view
  • 3GeV/c p
  • st4 V5.0pe
  • st4 X(U)4.1pe
  • st4 W4.8pe
  • st4stD

40
Npe distribution of all view
  • 3GeV/c , p
  • Station D V view
  • High gain VLPC
  • Are there photon
  • peak ?

41
Residual distribution of all station
  • 3GeV/c p
  • RMS
  • st1 x1.57mm
  • st1 y1.34mm
  • st1stB
  • st2 x0.70mm
  • st2 y0.60mm
  • st2stB

cm
42
Residual distribution of all station
  • 3GeV/c p
  • RMS
  • st3 x0.69mm
  • st3 y0.55mm
  • st3stC
  • st4 x0.74mm
  • st4 y0.64mm
  • st4stD

cm
43
w/magnetic field test
  • Time of Flight momentum from TOF counter
  • 250MeV/c , 325MeV/c , 400MeV/c
  • Residual distribution
  • hit position-helical track from fitting
  • 250MeV/c , 325MeV/c , 400MeV/c

44
TOF , 3GeV/c p
  • Time of Flight
  • s60ps
  • ?p/p of 3GeV/c p
  • is very small.
  • ?timing resolution of
  • TOF counters is
  • 60ps.
  • T142ps
  • TOFhodoscope41ps

Time of Flight(ps)
45
TOF , 250MeV/c 3
  • s(e)72ps
  • s(µ)152ps
  • s(beam)140ps
  • s(p)244ps

Time of Flight(ps)
46
TOF , 250MeV/c 3
  • µ
  • 231.1MeV/c
  • s7.1MeV/c

Momentum(MeV/c)
47
TOF , 250MeV/c 6
  • s(e)75ps
  • s(µ)155ps
  • s(beam)143ps
  • s(p)245ps

Time of Flight(ps)
48
TOF , 250MeV/c 6
  • µ
  • Mean231.2MeV/c
  • s7.2MeV/c

Momentum(MeV/c)
49
TOF , 325MeV/c 3
  • s(e)70ps
  • s(µ)98ps
  • s(beam)78ps
  • s(p)137ps

Time of Flight(ps)
50
TOF , 325MeV/c 3
  • µ
  • Mean306.4MeV/c
  • s11.2MeV/c

Momentum(MeV/c)
51
TOF , 325MeV/c 6
  • s(e)69ps
  • s(µ)97ps
  • s(beam)76ps
  • s(p)139ps

Time of Flight(ps)
52
TOF , 325MeV/c 6
  • µ
  • Mean305.9MeV/c
  • s10.94MeV/c

Momentum(MeV/c)
53
TOF , 400MeV/c 3
  • s(e)65ps
  • s(µ)79ps
  • s(beam)51ps
  • s(p)98ps

Time of Flight(ps)
54
TOF , 400MeV/c 3
  • µ
  • Mean382.2MeV/c
  • s18.78MeV/c

Momentum(MeV/c)
55
TOF , 400MeV/c 6
  • s(e)68ps
  • s(µ)81ps
  • s(beam)54ps
  • s(p)101ps

Time of Flight(ps)
56
TOF , 400MeV/c 6
  • µ
  • Mean381.0MeV/c
  • s19.03MeV/c

Momentum(MeV/c)
57
Residual distribution
  • 250MeV/c 3
  • µ1484evt
  • st1,st2
  • RMS
  • st1
  • x0.4048mm
  • y0.3703mm
  • st2
  • x0.8422mm
  • y0.5675mm

mm
58
Residual distribution
  • 250MeV/c 3
  • µ1484evt
  • st3,st4
  • RMS
  • st3
  • x0.6111mm
  • y0.4889mm
  • st4
  • x0.7607mm
  • y0.5853mm

mm
59
Residual distribution
  • 250MeV/c 6
  • µ932evt
  • st1,st2
  • RMS
  • st1
  • x0.4177mm
  • y0.3110mm
  • st2
  • x0.9453mm
  • y0.4249mm

mm
60
Residual distribution
  • 250MeV/c 6
  • µ932evt
  • st3,st4
  • RMS
  • st3
  • x0.6107mm
  • y0.4599mm
  • st4
  • x0.8727mm
  • y0.3764mm

mm
61
Residual distribution
  • 325MeV/c 3
  • µ3308evt
  • st1,st2
  • RMS
  • st1
  • x0.3669mm
  • y0.2860mm
  • st2
  • x0.7673mm
  • y0.4090mm

mm
62
Residual distribution
  • 325MeV/c 3
  • µ3308evt
  • st3,st4
  • RMS
  • st3
  • x0.5561mm
  • y0.4629mm
  • st4
  • x0.7045mm
  • y0.4390mm

mm
63
Residual distribution
  • 325MeV/c 6
  • µ1187evt
  • st1,st2
  • RMS
  • st1
  • x0.3980mm
  • y0.2364mm
  • st2
  • x0.8484mm
  • y0.3388mm

mm
64
Residual distribution
  • 325MeV/c 6
  • µ1187evt
  • st3,st4
  • RMS
  • st3
  • x0.6055mm
  • y0.4327mm
  • st4
  • x0.7845mm
  • y0.3483mm

mm
65
Residual distribution
  • 400MeV/c 3
  • µ3136evt
  • st1,st2
  • RMS
  • st1
  • x0.3586mm
  • y0.2357mm
  • st2
  • x0.7142mm
  • y0.3294mm

mm
66
Residual distribution
  • 400MeV/c 3
  • µ3136evt
  • st3,st4
  • RMS
  • st3
  • x0.5866mm
  • y0.4351mm
  • st4
  • x0.6682mm
  • y0.3706mm

mm
67
Residual distribution
  • 400MeV/c 6
  • µ1582evt
  • st1,st2
  • RMS
  • st1
  • x0.3748mm
  • y0.2129mm
  • st2
  • x0.7998mm
  • y0.2938mm

mm
68
Residual distribution
  • 400MeV/c 6
  • µ1582evt
  • st3,st4
  • RMS
  • st3
  • x0.5942mm
  • y0.4164mm
  • st4
  • x0.7400mm
  • y0.2910mm

mm
Write a Comment
User Comments (0)
About PowerShow.com