Polarization effects in slepton production at hadron colliders - PowerPoint PPT Presentation

About This Presentation
Title:

Polarization effects in slepton production at hadron colliders

Description:

High energy extension of the Standard Model. Only non trivial extension of the Poincar group ... LO : H.Baer, C.Chen, F.Paige and X.Tata, PRD 49 (1994) 3283 ... – PowerPoint PPT presentation

Number of Views:22
Avg rating:3.0/5.0
Slides: 16
Provided by: fuksbe
Category:

less

Transcript and Presenter's Notes

Title: Polarization effects in slepton production at hadron colliders


1
Polarization effects in slepton production at
hadron colliders
  • Giuseppe Bozzi
  • Euro-GDR 2004
  • Frascati - November 25, 2004
  • in collaboration with B. Fuks and M. Klasen

Preprint submitted to arXiv hep-ph/0411318
2
Introduction
  • SUSY
  • High energy extension of the Standard Model
  • Only non trivial extension of the Poincaré group
  • Symmetry between fermionic and bosonic degrees of
    freedom
  • Solving the hierarchy problem
  • Stabilization of the Higgs mass
  • Explanation of gauge coupling unification
  • MSSM
  • One generator --gt one SUSY particle for each SM
    particle
  • Renormalizability
  • B, L (--gt R-parity) conservation

3
Introduction
  • Phenomenology
  • None of these partners has been discovered yet
  • - Superpartner masses lie at a higher
    scale
  • - SUSY must be broken
  • Hierarchy of scales must be maintained
  • - Supersymmetry breaking through soft
    mass terms
  • - Superpartner masses are no larger than
    a few TeV
  • gt Within the discovery reach of current and
    future
  • hadron colliders (RHIC, Tevatron, LHC)

4
Introduction
  • Purposes of this work
  • Processes studied and
  • Unpolarised cross sections well known (both LO
    and NLO)
  • - LO S.Dawson, E.Eichten and C.Quigg, PRD 31
    (1985) 1581
  • - LO H.Baer, C.Chen, F.Paige and X.Tata, PRD
    49 (1994) 3283
  • - NLO H.Baer, B.W.Harris and M.H.Reno, PRD 57
    (1998) 5871
  • - NLO W.Beenakker, M.Klasen, M.Krämer,
    T.Plehn, M.Spira and P.M.Zerwas, PRL 83 (1999)
    3780
  • (NLO enhances LO by 35 at Tevatron and 20
    at LHC --gt extended discovery reach)
  • Polarised cross sections
  • - Old paper for old colliders
  • P.Chiappetta, J.Soffer and P.Taxil, PLB 162
    (1985) 192
  • - No mixing (important, especially for the
    lightest slepton )
  • - Discrimination between new physics signal and
    SM background
  • Verify and extend previous polarized
    calculations, including mixing effects relevant
    for third generation sleptons

5
Cross sections
  • Feynman Diagrams
  • Electroweak couplings
  • fermions
  • sfermions multiplication by Sj1Si1 and Sj2Si2
    after the introduction of the mixing
    matrix

6
Cross sections
  • Unpolarised partonic cross section
  • Remark and are supposed degenerate
    in mass
  • Unpolarised hadronic cross section
  • Parton Distribution Function GRV98LO
  • M.Glück, E.Reya and A.Vogt, EPJ C5 (1998) 461

7
Hadronic cross sections
  • and supposed degenerate in mass (no
    mixing here)
  • LHC visible in the entire mass range
  • Tevatron visible in a restricted mass range
  • RHIC difficult !
  • Background ? 10 nb(3 to 6 orders of magnitude
    higher)

8
Spin asymmetry
  • Cross sections

  • and
  • and
    (no photon contribution here)
  • Introduction of the mixing angle ? (Mass
    eigenstates and )
  • Polarised PDF used GRSV2000LO (standard and
    valence)
  • M. Glück, E. Reya, M. Stratmann and W.
    Vogelsang, PRD 63 (2001) 094005

9
Spin Asymmetry, RHIC
  • RHIC 500 GeV (SUSY scenario
    with light , maybe visible)
  • GMSB scenario based on SPS 7
    ( is the NLSP, after the
    gravitino)
  • Parameters
  • ? is varying (default 40 TeV)
  • Mmes 80 TeV
  • Nmes 3
  • tan ? 15
  • µ gt 0

10
Spin Asymmetry, RHIC
  • Only a small area of interest
  • Invisible cross section
  • Mass exclusion domain (LEP)
  • Physical constraints on SUSY parameters
  • Large PDF uncertainties (large Bjorken-x)
  • Sensitive to the mixing constraints on SUSY
    parameters ?
  • Background AL 0.1 0.04(after invariant
    mass cut at 52 GeV)
  • --gt Discrimination SUSY/SM


30
11
Spin Asymmetry, Tevatron
  • SUSY scenario based on SPS1a( Standard choice )
  • is the NLSP (after the neutralino), but slow
    decay
  • Parameters
  • M1/2 250 GeV
  • M0 70 GeV (SPS 1a 100 GeV)
  • A0 varying (default 300 GeV SPS 1a -100
    GeV)
  • tan ? 10
  • µ gt 0

12
Spin Asymmetry, Tevatron
  • Physical constraints on SUSY parameters
    (cos ? from 0.21 to 0.30)
  • Small PDF dependence(well known Bjorken-x range)
  • Sensitive to the mixing
  • Constraints on SUSY parameters ?
  • Background AL 0.09 0.08 (after
    invariant mass cut)
  • --gt Discrimination SUSY/SM


5-6
13
Spin Asymmetry, LHC
  • SUSY scenario based on SPS 4(at LHC we can reach
    heavy masses --gt SPS4)
  • Parameters
  • M1/2 400 GeV (higher masses)
  • M0 300 GeV (higher masses)
  • A0 varying (default 0)
  • tan ? 50 (large splitting)
  • µ gt 0

14
Spin Asymmetry, LHC
  • Physical constraints on SUSY parameters
    (cos ? is going from
    0.29 to 0.40)
  • Large PDF uncertainties (small Bjorken-x)
  • Sensitive to the mixing
  • Constraints on SUSY parameters ?
  • Background AL 0.025 0.015 (after
    invariant mass cut)
  • --gt Discrimination SUSY/SM


20

10
15
Conclusions and outlook
  • Spin asymmetry measurements
  • Differentiation of SM/SUSY processes for all 3
    colliders.
  • More severe constraints on SUSY parameters ?
  • Tevatron small PDF uncertainties --gt reliable
  • LHC, RHIC large PDF uncertainties --gt more
    difficult
  • Outlook
  • Better constraints on PDFs (from HERA, RHIC,)
    are welcome!
  • Higher order calculations
Write a Comment
User Comments (0)
About PowerShow.com