Primary Hip Arthroplasty Cemented - PowerPoint PPT Presentation

1 / 124
About This Presentation
Title:

Primary Hip Arthroplasty Cemented

Description:

Collier: Clinical Orthopedics; 1988. Micromotion. 40 Micron Motion Bone ... Engh: Clinical Orthopedics; 1988. Design Features. Fully Coated Porous Surface ... – PowerPoint PPT presentation

Number of Views:1002
Avg rating:3.0/5.0
Slides: 125
Provided by: noral8
Category:

less

Transcript and Presenter's Notes

Title: Primary Hip Arthroplasty Cemented


1
Primary Hip ArthroplastyCementedUncemented
Frank R. Ebert, MD
Union Memorial HospitalBaltimore, Maryland
2
Johns HopkinsUnion Memorial
Orthopædic Review Course
3
Anatomic Approach
  • Anterior Approach
  • Anterior-Lateral Approach
  • Posterior Approach
  • Medial Approach

4
(No Transcript)
5
Anatomic Approach
  • Open Reduction CDH
  • Pelvic Osteotomies
  • Intra-Articular Fusion
  • Rarely Total Hip

6
(No Transcript)
7
Internervous Plane
  • Superficial
  • Sartorius / TFL ( Femoral/Superior gluteal
    )
  • Deep
  • Rectus / gluteus medius ( Superior gluteal
    )

8
(No Transcript)
9
Anterolateral Approach
  • Most common for THA
  • ORIF of femoral neck
  • Synovial biopsy of the hip

10
Anterolateral Approach
  • Internervous plane none
  • TFL / gluteus medius
  • Superior gluteal / Superior gluteal

11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
(No Transcript)
15
Lateral Approach
  • Dangers
  • Superior gluteal nerve
  • Femoral nerve

16
(No Transcript)
17
Medial Approach
  • CDH open reduction
  • Psoas Release
  • Obturator Neurectomy
  • Biopsy or Treatment of tumors of femoral neck

18
Medial Approach
  • Internervous plane ( only deep )
  • Superficial
  • Adductor Longus / gracilis
  • Deep
  • Adductor Brevis / magnus

19
Posterior Approach
  • Internervous plane none
  • splits gluteus maximus ( inferior gluteal )

20
(No Transcript)
21
Primary Hip Arthroplasty
  • Posterior Approach
  • Total hip replacement
  • ORIF of posterior column fractures
  • Dependent drainage of hip sepsis

22
(No Transcript)
23
Primary Hip Arthroplasty
  • Posterior Approach
  • Sciatic Nerve
  • Inferior gluteal artery

24
(No Transcript)
25
Primary Hip Arthroplasty
  • Design Features
  • Size
  • Shape
  • Device configuration
  • Material / physical properties

26
Primary Hip Arthroplasty
  • Resist Composite Failure
  • Prosthetic Device
  • Bone Cement
  • Cancellous Bone
  • Cortical Bone

27
Primary Hip Arthroplasty
  • Design Features
  • Femoral Head
  • Neck
  • Stem
  • Collar
  • Acetabulum

28
(No Transcript)
29
Primary Hip Arthroplasty
  • Prosthetic Hip Loading
  • Changes from externally loaded system to an
    internally loaded system

30
(No Transcript)
31
Primary Hip Arthroplasty
  • Femoral Head Design
  • Articulating finish
  • Head diameter

32
DESIGNFEATURES
Femoral Head
33
Primary Hip Arthroplasty
  • 32 mm Head Size
  • Greater acetabular loosening
  • Greatest volumetric wear

Ritter COOR 76Morrey JBJS 89
34
(No Transcript)
35
Design Features22mm Head Size
  • u Greatest linear wear
  • u Greatest acetabular penetration

MorreyJBJS 1989
36
Design Features
  • Charnley 22mm head diameter
  • Compromise friction / wear

37
Design Features28 mm Head Size
  • Stable as 32mm head size
  • Less torque than the 32mm head
  • More favorable direct stress transmission patterns

38
Primary Hip Arthroplasty
  • 28 mm Head Size
  • Compromise

39
Primary Hip Arthroplasty
  • Design Features Femoral Neck Geometry
  • Neck stem angle 135º
  • Neck stem offset
  • large offset . . . Bending moment
  • small offset . . . Decreases moment arm

40
(No Transcript)
41
Primary Hip Arthroplasty
  • Design Features
  • Femoral Stem
  • Length
  • Shape
  • Material properties
  • Surface finish

42
Primary Hip Arthroplasty
  • Femoral Stem Design
  • Cross sectional geometry
  • Defines strength / stiffness
  • Avoid sharp corners

43
Primary Hip Arthroplasty
  • Femoral Stem Design
  • Large lateral volume
  • Less tensile stress in the mantle laterally
  • Large medial volume less tensile stress

44
Primary Hip Arthroplasty
  • Collar
  • Primary role for optimal load transfer to
    proximal femur

Crowninshield JBJS 80Andriacchi JBJS 76
45
Primary Hip Arthroplasty
  • Collar
  • Reduces adaptive bone resorption
  • Reduce bending stress in the component
  • Reduce stress in the distal cement

46
(No Transcript)
47
Primary Hip Arthroplasty
  • Fixation Features
  • PMMA
  • Weak link
  • Poor fracture toughness
  • Low tensile and fatigue strength
  • Elastic modulus 1/3 lower than cortical bone

48
Primary Hip Arthroplasty
  • Fixation FeaturesPMMA Improvements
  • Carbon Fibers Decreased cement intrusion /
    increased viscosity
  • Low Viscosity Lower fatigue strength
  • Centrifugation Improved tensile and fatigue
    strength

49
PMMA Improvements
  • Centrifugation 30 sec / 4000 rpm
  • Vacuum

Burke JBJS 84Chin/Stauffer JBJS 90
50
Primary Hip Arthroplasty
  • Material Properties
  • Stainless Steel high elastic modulus / low
    fatigue strength
  • Cobalt Chrome highest elastic modulus /
    better yield / fatigue strength
  • Titanium lower elastic modulus / less
    stiffness

51
Primary Hip Arthroplasty
  • Acetabulum Design
  • Metal backed
  • All polyethylene

52
(No Transcript)
53
Primary Hip ArthroplastyCement Fixation
  • The Femoral Side
  • Results directly related to Surgical
    Techniques

54
Primary Hip Arthroplasty
  • Metal Backed
  • Increased linear and volumetric wear
  • Increased radiolucency, loosening, revision
  • No series of documented superior results

55
Improved Longevity Femoral Side
  • Improved Longevity femoral side
  • Plug canal
  • Retrograde fill
  • Avoid varus / valgus gt 5º

MulroyJBJS 95
56
Primary Hip Arthroplasty
Grade Radiographic Appearance
  • A White-Out
  • B Complete Distribution
  • C1 Extensive Radiolucent Line
  • C2 Thin mantle lt 1 mm
  • D Gross deficiencies

57
Primary Total Hip
  • 1st Generation Cement Technique
  • Finger Packing No pressurization
  • No Canal Prep Cast stem
  • No Plug Narrow med border
  • No Gun Sharp edges

WH Harris
58
Primary Hip ArthroplastyCement Techniques
  • Probable Improved Longevity
  • Femoral Side
  • Pressurize
  • Centralize
  • Continuous Cement Mantle

HarrisCOOR 97
59
Cemented Long Term
60
Primary Total Hip2nd Generation Cement
  • William Harris Began 1975
  • Gun 71 Super alloy
  • Jet lavage Broad round medial border
  • Canal Prep
  • Cement Restriction

61
Primary Total HipCemented Long Term
  • Results 25 year Survivorship
  • Acetabulum Survive
  • Age lt 40 74 40-49 80 60-69 92
  • Femur lt 40 83 40-49 82 60-69 95

Barry et al1998
62
Primary Total Hip25 Year Follow-Up
  • Total Aseptic Loosening
  • Acetabulum
  • Revision 14.5 Radiologic 19.4
  • Total 33.9
  • Femoral Revision 6.4 Radiologic 8.1

Callaghan, Johnston, JBJS 97. Harris Course 98
63
Cemented Primary Total HipClinical Results
with2 Generation Techniques
RevisionRate
FollowUp
Hips
  • Neumann (94) 241 17.6 yrs 8.3
  • Schulte 93 330 20 yrs 3
  • Wroblewski 93 1324 20 yrs 6
  • Kavanagh 94 333 20 yrs 16

64
Cemented Primary Total HipClinical Results
with2º Generation Techniques
RevisionRate
FollowUp
Hips
  • Barrack 92 50 12 yrs 0
  • Madey 97 356 15 yrs 1
  • Mulroy 95 162 15 yrs 2
  • Smith 98 161 18 yrs 5

65
Primary Total HipClinical Results
  • Cemented Total Hip 2nd Generation
  • 14-17 year follow-up 102 hips
  • Femoral loosening 2 revised
  • Acetabular loosening 10 revised
  • 42 radiologic

Mulroy, Harris, JBJS 95 COOR 97
66
Cemented Primary Total HipClinical Results
Acetabular Side
Rev.Rate
Loosen-ing
Prosthesis
Hips
  • Sullivan 94 Charnley 89 13 37
  • Smith 98 CAD 65 23 26
  • Callaghan 98 Charnley 93 19 15

67
Primary Total Hip3rd Generation Cement Technique
  • Bill Harris Began 1982
  • Porosity reduction
  • Rough surface
  • Centralization
  • Pressurization
  • Pre-coat

68
Primary Total Hip
Conclusions Cemented
  • Plug and retrograde fill
  • Avoid excessive varus/valgus
  • Strive for 3-5 mm prox/med gt 2mm distal
  • Do not ream / remove good cancellous bone

69
Primary Total HipClinical Results
  • Hybrid Construct
  • Galante - 95 f/u 5 years
  • Femoral 2 rad loose
  • Acetabulum 2 rad loose
  • Woolson - 96 f/u 6 years
  • Femoral 5 revision
  • Acetabulum 0 revision

70
Design Features
  • POROUS IMPLANT

71
Uncemented THA
  • Definition
  • Press Fit
  • Macrointerlock
  • Microinterlock

72
(No Transcript)
73
Design Features
  • Pore Size Animal Studies
  • 50 to 400 µm Optimal bone ingrowth

Bobyn Clinical Orthopedics 1980Engh JBJS
1987Collier Clinical Orthopedics 1988
74
Micromotion
  • 40 Micron Motion Bone Ingrowth (JBJS 79-A)
  • 150 Micron Motion Fibrous Ingrowth (CORR,
    208)

75
Design Criteria Long Term Implant Stability
  • Initial Implant Stability
  • Implant micromotion lt 50 mm of displacement
  • Level of implant coating
  • Type of coating

Kienapfel H.J. Arthroplasty 1999
76
Design Criteria
  • Uncemented Total Hip Arthroplasty
  • Key Resistance to Rotation Around the
    Long Axis

77
Design Criteria
  • Uncemented Total Hip Arthroplasty
  • Resist translation in 3 planes
  • Axial
  • Medial - lateral
  • Anterior - posterior

78
Design Criteria Uncemented Implants
  • Level of Implant Coating
  • Apply circumferential
  • Avoid patch porous coats
  • Smooth surface high failure rate

79
Design Criteria Uncemented Implants
  • Type of Coating
  • 1. Macro-texturing doesnt work
  • 2. Roughened titanium
  • 3. Porous coating made of CoCr or Ti
  • 4. Ti wire mesh
  • 5. Plasma-sprayed Ti
  • 6. Bioactives Hydroxyapatite / tricalcium
    phosphate

80
(No Transcript)
81
Design Features
  • Sintered Micro/Macro BeadsCr-Co-Mo/Ti
  • Pore dimensions 100 to 400 mm
  • AML PCA

82
(No Transcript)
83
Fatigue strength
Process psi MPa
Forged 90 600 Cast 35 250 Sintered 25 150 Sintered
withcontrolled coating 30 200
Data from Pilliar, R.M. Clin. Orthop. 17642-51,
1983.
84
Design Criteria Uncemented Implants
  • Implant Geometry Implant Stability
  • 1) Wedge-shaped metaphyseal filling
  • 2) Single wedge-shaped implants
  • 3) Tapered stems
  • 4) Diaphyseal fixation cylindrical or fluted
    stems

85
Design Criteria
  • Uncemented Implants
  • Requires cortical fixation
  • Metaphysis
  • Metaphysis Diaphysis
  • Diaphyseal

86
Design Criteria Uncemented Implants
  • Bioactives Osteoconductive
  • Tricalcium dissolves more rapidly than
    hydroxyapatite
  • Thickness 50 mm
  • More crystalline hydroxyapatite slows resorption

87
Uncemented Primary Total HipClinical Results
Femoral Side
  • Titanium Cobalt Chrome
  • Cobalt Chrome increased stress- shielding
  • Straight Stems with varying degrees of
    medullary fill often used
  • Anatomic Stems have not been a great
    advantage

88
Design Features
  • u Straight Stem
  • u?An Anatomic Stem

89
Design Features
  • Proximal Coating

90
Design Features
  • u Proximal coating Anatomic design
  • u Maximum fit in certain priority areas
  • u Maximal load transfer
  • u Resist axial loading and torsional loads

Poss Clinic
91
(No Transcript)
92
Design Features
  • u Both greater distal motion at interface
  • Compared with proximal motion

Callaghan, JBJS 92
93
The HGP stem (courtesy of Zimmer)
94
(No Transcript)
95
Design Features
  • Porous Implant

Fully coated
u
Proximal coating
u
96
Design Features Porous Surface
  • u 2/3 or fully coated
  • 2 to 4 x increase in bone resorption

Engh Clinical Orthopedics 1988
97
Design Features
  • Fully Coated Porous Surface
  • u Transfers stress distally under axial load

Proximal bone resorption
Engh Clinical Orthopedics 1988
98
Retrieval Studies
  • Engh
  • Femur 57 ingrowth
  • Acetabulum 32 ingrowth

99
Radiographic Criteria for Bone Ingrowth
  • Engh et al, (CORR 257)
  • Absence of Reactive Lines
  • Spot Welds Endosteal Bone
  • Implant Instability 2 mm
  • Pedestal
  • Calcar Atrophy / Stress Shielding

100
Uncemented Primary Total HipClinical Results
Femoral Side
  • Straight Stem Design loosening
  • AML 507 hips 5- 14 yrs 1.2
  • Harris/ Galante 121 hips 3- 6.2 yrs 3.3
  • Omniflex 88 hips 2- 5.2 yrs 3.4
  • Taperloc 145 hips 8- 12.5 yrs 0.7
  • Trilock 71 hips gt 10 yrs 0

101
Uncemented Primary Total HipClinical Results
Femoral Side
  • Anatomic Stem Design loosening
  • APR-1 100 hips 5-9.4 yrs 11
  • APR-2 148 hips 2-5 yrs 0
  • PCA 539 hips 6-8 yrs 7.6
  • 100 hips gt 7 yrs 2.0

102
Screw Fixation
  • Less Micromotion, Better Ingrowth
  • Conduit for Particulate Debris
  • Neurovascular Injury

103
Acetabular Design
  • Hemisphere
  • Screw Fixation
  • Locking Mechanism

104
Uncemented Primary Total Hip Main Recurrent
Concern
  • Poly Wear Osteolysis

105
Uncemented Primary Total HipClinical Results
Acetabular Side
  • Femoral head size Acetabular thickness
  • PCA 26 mm head no osteolysis
  • PCA 32 mm head 26 osteolysis

106
(No Transcript)
107
(No Transcript)
108
Uncemented Primary Total HipClinical Results
Acetabular Side
  • loosening
  • ARC 72 hips 12 yrs 1.4
  • Harris/Galante 136 hips 5-10 yrs 0
  • PSL smooth HA 316 hips 6-10 yrs 12 beaded
    HA 2.7
  • PCA 241 hips 2-9 yrs 11 539 hips 7
    yrs 13.2 100 gt 7 yrs 4 rev.

109
Uncemented Primary Total HipClinical Results
Acetabular Side
  • Hemispherical shape rim fit
  • Under ream No gt 2 mm
  • Screws produced durable results -
    postop
  • Disadvantage posterior sciatic N. Ant
    sup common iliac Ant inf obturator art /
    ner


110
Complications in Total Hip Arthroplasty
Heterotopic Ossification
  • Treatment
  • Radiation pre-op or post-op 500 to 1000 Rad
    Remember to shield implant
  • Indomethacin
  • Ibuprofen
  • Diphosphonates

111
Complications In Total Hip Arthroplasty
Heterotopic Ossification 0.6 to 61.7
  • Associated conditions
  • Ankylosing spondylitis
  • Forestiers disease
  • Post traumatic arthritis
  • Bilateral male osteophytic OA

112
Complications in Total HipArthroplasty
Dislocation
  • Component Impingement
  • Proximal femur
  • Femoral head skirt
  • Acetabular component (elevated liner)
  • Osteophytes / cement masses
  • Head Size
  • No difference 22 - 28 - 32
  • 28 mm head gt 60 mm acetabulum increased
    rate
  • 22 mm head gt 54 mm acetabulum increased rate

113
Complications In Total Hip Arthroplasty
Dislocation 3
  • Posterior approach slightly higher 4.6
  • Neuromuscular problems
  • Previous surgery (rate doubles)
  • Malposition
  • gt 25º anteversion
  • gt 60º inclination
  • Retroversion
  • gt 15º femoral anteversion

114
Treatment
  • Bracing
  • Spica cast
  • Surgery

115
Complications In Total Hip Arthroplasty
Dislocation
  • Occult infection
  • Trauma
  • Profound weight loss

116
Complications In Total Hip Arthroplasty
Thromboembolism
  • Most common complication
  • DVT 70 to 8
  • PE 1 to 2

117
Complications In Total Hip Arthroplasty
Thromboembolism
  • Activation of clotting cascade
  • Local vessel injury
  • Stasis in the femoral vein

118
Ultra-High Molecular Weight Polyethyleneis
defined as what type of material ?
  • 1. Elastic
  • 2. Viscoelatic-plastic
  • 3. Rigid
  • 4. Shear thinning
  • 5. High friction

119
The degradation of polyethylene following gamma
irradiation is related to what factor ?
  • 1. Increased ionic bonding
  • 2. Surface ion implantation
  • 3. Free radical formation
  • 4. Decreased covalent cross- linking
  • 5. Decreased polymer density

120
Why is cobalt-chrome alloy preferred over a
titanium alloy for a cemented femoral component
in a total hip arthroplasty ?
  • 1. Less particulate metal debris
  • 2. Less stiffness
  • 3. Elastic modulus closer to bone cement
  • 4. Cost-effectiveness
  • 5. Better cement bonding ability

121
What is the most common long-term complication of
cemented total hip arthroplasty in patients under
50 years of age?
  • 1. Age
  • 2. Dislocation
  • 3. Periprosthetic femur fracture
  • 4. Acetabular component loosening
  • 5. Femoral stem fracture

122
During a posterior approach to the hip joint,
profuse bleeding is encountered during incision
of the quadratus femoris.
  • The bleeding is most likely from which artery?
  • 1. Superior gluteal.
  • 2. Inferior gluteal.
  • 3. Lateral femoral circumflex.
  • 4. Medial femoral circumflex.
  • 5. Posterior femoral circumflex.

123
Which is the correct order of the elastic modulus
of the following materials, from the lowest to
highest modulus?
  • 1. Polyethylene, cancellous bone, cortical bone,
    titanium alloy, cobalt chrome alloy
  • 2. Cancellous bone, cortical bone, polyethylene,
    titanium alloy, cobalt chrome alloy
  • 3. Cancellous bone, cortical bone, polyethylene,
    cobalt chrome alloy, titanium alloy
  • 4. Cancellous bone, polyethylene, cortical bone,
    cobalt chrome alloy, titanium alloy
  • 5. Cancellous bone, polyethylene, cortical bone,
    titanium alloy, cobalt chrome alloy

124
Thank You
Write a Comment
User Comments (0)
About PowerShow.com