The Walter Schottky Institute - PowerPoint PPT Presentation

1 / 35
About This Presentation
Title:

The Walter Schottky Institute

Description:

for wavelength of 8-10 m. Conclusion. 4. Laser types and covered ... Shorter wavelength, l~7.8 mm (larger confinement GAR, smaller losses aw) Improved design: ... – PowerPoint PPT presentation

Number of Views:39
Avg rating:3.0/5.0
Slides: 36
Provided by: McA79
Category:

less

Transcript and Presenter's Notes

Title: The Walter Schottky Institute


1
MIOMD-VII Lancaster University, UK, 2005
Recent Progress on MIR Laser Diodes
M.- C. Amann, M. Grau, and A. Friedrich
Walter Schottky Institute Technical University
Munich Germany
  • now with
  • VERTILAS GmbH, Garching, Germany

2
Contents
  • Introduction
  • GaSb-based type-I laser diodes for wavelengths
    3µm
  • Staircase-type quantum cascade lasersfor
    wavelength of 8-10µm
  • Conclusion

3
Contents
  • Introduction
  • GaSb-based type-I laser diodes for wavelengths
    3µm
  • Staircase-type quantum cascade lasersfor
    wavelength of 8-10µm
  • Conclusion

4
Laser types and covered wavelength range
1. Introduction
5
Wavelength ranges for cw operation
1. Introduction
Room-temperature cw
6
Wavelength ranges for cw operation
1. Introduction
Room-temperature cw
no RT cw !
7
Some gas lines in 3-6µm range
1. Introduction
cw-laser diodes
InP-based lasers
Quantum cascade lasers
GaSb-based lasers
wavelength (µm)
8
Contents
  • Introduction
  • GaSb-based type-I laser diodes for wavelengths
    3µm
  • Staircase-type quantum cascade lasersfor
    wavelength of 8-10µm
  • Conclusion

9
Long wavelength GaSb-based lasers
GaSb-Lasers
sources for MIR cw operation _at_ RT GaSb-based
lasers or QCLs
  • status of GaSb-based lasers
  • high power lasers realized for wavelengths up to
    2.8 µm
  • RT cw emission up to 3.1 µm
  • pulsed RT operation at 3.16 µm

10
Bandstructure of a 3 µm MIR-Laser
11
Challenges for GaSb-based lasers gt 3 µm
GaSb-Lasers
  • increase of Indium in GaInAsSb active material
    results in type-II band-alignment
  • small valence band offset results in strong
    temperature dependece of performance (low T0, cw
    difficult for wavelengths gt 3 µm)
  • strain in QWs helps, but critical thickness sets
    limits

12
Strategies for lasers beyond 3 µm
GaSb-Lasers
  • improve heat managment of previously shown lasers
    with pulsed RT operation? gold heat spreader on
    top of ridge waveguide lasers
  • improve band alignment for better hole
    confinement ? new barrier material quinternary
    AlGaInAsSb

13
Strategies for lasers beyond 3 µm
GaSb-Lasers
  • improve heat managment of previously shown lasers
    with pulsed RT operation? gold heat spreader on
    top of ridge waveguide lasers
  • improve band alignment for better hole
    confinement ? new barrier material quinternary
    AlGaInAsSb

14
Lasers with gold heat spreader
GaSb-Lasers
top view
cross section
  • ridge waveguide lasers with electroplated gold
    heat spreader

15
Lasers with gold heat spreader
GaSb-Lasers
simulation of heat transfer with Quickfield
16
Lasers with gold heat spreader
GaSb-Lasers
  • cw operation at RT
  • wavelength 3.18 µm

17
Strategies for lasers beyond 3 µm
GaSb-Lasers
  • improve heat managment of previously shown lasers
    with pulsed RT operation? gold heat spreader on
    top of ridge waveguide lasers
  • improve band alignment for better hole
    confinement ? new barrier material quinternary
    AlGaInAsSb

18
New quinternary barrier material
GaSb-Lasers
  • increased valence band offset with AlGaInAsSb
    barriers
  • improved hole confinement in QWs
  • reduction of conduction band offset, improves
    homogenity of electron injection in multiple
    quantum well structures

19
Structural quality of quinternary material
GaSb-Lasers
  • good structural quality of MBE grown bulk
    AlGaInAsSb
  • laser structure comprising compressivley strained
    GaInAsSb-QWs shows sharp satellite peaks in HRXRD
    measurements

20
Lasers with quinternary AlGaInAsSb barriers
GaSb-Lasers
21
3,26 µm - Laser with quinternary barriers
  • Tmax pulsed 50C !
  • Potential for cw _at_ RT

22
Contents
  • Introduction
  • GaSb-based type-I laser diodes for wavelengths
    3µm
  • Staircase-type quantum cascade lasersfor
    wavelength of 8-10µm
  • Conclusion

23
Concept of usual QC lasers
Staircase-Lasers
Quantum-cascade laser with injection miniband
  • transfer of electrons
  • working in a wide electric field range
  • doping stable current flow
  • suppression of thermal backfilling

Periodic repetition of two sections ( 30)
24
QC lasers without injector regions
Staircase-Lasers
Quantum-cascade laser without injection miniband
  • no optically passive sections
  • compact gain regions
  • Problems to solve
  • electron injection?
  • limited electric field range?
  • scattering from donor impurities?
  • thermal backfilling?

25
Former injectorless QC lasers
Staircase-Lasers
  • Low performance

    ? High threshold current
    densities (1Jth ? 5.9 kA/cm2,
  • 2Jth ? 4 kA/cm2, 3Jth ? 3.6 kA/cm2,
    77 K)
    ? Limited maximum
    operating temperature (Tmax ? 200 K)
  • Reasons for our previous results1,3


    ? Design not
    optimized

    ? Highly doped GaInAs-cladding
    ? high waveguide-losses
  • (?w ? 60 cm-1, ? ? 10 µm)


1N. Ulbrich et al., Appl. Phys. Lett., 2002, 80,
pp. 4312-4314 2M. Wanke et al., Appl. Phys.
Lett., 2001, 78, pp. 3950-3952 3G. Scarpa et al.,
IEEE Proceedings IPRM, 2002, pp. 735-738
26
Design
Staircase-Lasers
Improved design Active section
Al0.56In0.44As/Ga0.4In0.6As (in nm)
3.4/4.0/1.3/5.2/0.9/2.6/1.9/3.2
Doping nAR 6.4?1010 cm-2 AR 60 periods
  • Four-level staircase
  • LO-Phonon resonant tunneling injection
  • Layers where radiativ transition takes place are
    left undoped to avoid scattering on donor
    impurities

27
Design
Staircase-Lasers
Increased electric field
  • Double LO-Phonon resonant condition
  • wide electric field range
  • reduces thermal backfilling
  • Diagonal transition strong wavelength shift due
    to voltage induced Stark-effect
    ?80kV/cm ? 10 µm ?110kV/cm ? 8.4 µm

28
Design
Staircase-Lasers
Concept 4-level staircase
  • no optically passive sections
  • compact gain regions
  • Problems solved
  • electron injection
  • limited electric field range
  • scattering from donor impurities
  • thermal backfilling

29
Results
Staircase-Lasers
  • Pulsed operation 250 ns, 250 Hz
  • L 4 mm, W 30 mm
  • Jth 0.9 kA/cm2 (77 K),
    Jth 3.1 kA/cm2 (300 K)
  • ?77 K 10 mm l300 K 8.4 mm
  • Jth reduced by a factor of 3
  • Tmax 350 K

30
Improved active region
Staircase-Lasers
Improved design Active section
Al0.56In0.44As/Ga0.4In0.6As (in nm)
3.4/4.4/1.1/6.0/0.8/2.2/1.9/3.0
  • New structure
  • Same concept (4-level staircase)
  • Vertical transition (increased probability
    density, small wavelength shift)
  • Shorter wavelength, l7.8 mm (larger confinement
    GAR, smaller losses aw)

Doping nAR 8.6?1010 cm-2 AR 65 periods
31
Results
Staircase-Lasers
  • L 3.2 mm, W 12 mm
  • Jth 0.21 kA/cm2 (77 K),
    Jth 2.4 kA/cm2 (300 K)
  • ?300 K 7.9 mm
  • Tmax 400 K

32
Comparison to usual QCLs
Staircase-Lasers
R. Green et al., Appl. Phys. Lett., 2004, 85, pp.
5529-5531
  • Comparison to usual QWCLs in same wavelength
    region
  • Low temperatures Exceedingly small threshold
    current densities
  • Room-temperature values comparable

33
Contents
  • Introduction
  • GaSb-based type-I laser diodes for wavelengths
    3µm
  • Staircase-type quantum cascade lasersfor
    wavelength of 8-10µm
  • Conclusion

34
Conclusion
  • GaSb-based type-I lasers up to 3.26 µm at 300 K
  • CW room-temperature operation up to 3.18 µm
  • Obstacle of lacking hole confinement removed by
    quinternary AlGaInAsSb barriers
  • Injectorless quantum cascade lasers (i. e.
    Staircase lasers) at 8-10 µm realized
  • Room-temperature performance comparable to
    stanndard quantum cascade lasers
  • Significantly smaller ( factor 3-4) threshold
    current densities at low temperatures

35
Acknowledgement
  • G. Böhm
  • C. Lin
  • R. Meyer
  • G. Scarpa
  • G. Xu
  • L. Mora
  • R. Heilmann
  • now with State Key Laboratory of Functional
    Materials for Informatics, Chinese Academy of
    Sciences, Shanghai, China
Write a Comment
User Comments (0)
About PowerShow.com