Analysis of chaos in an electric network using Lorenz system - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

Analysis of chaos in an electric network using Lorenz system

Description:

Main reason for chaos in electric networks is highly varying and unpredictable loads. ... These loads are problematic because they cause: Voltage flicker ... – PowerPoint PPT presentation

Number of Views:42
Avg rating:3.0/5.0
Slides: 34
Provided by: sar110
Category:

less

Transcript and Presenter's Notes

Title: Analysis of chaos in an electric network using Lorenz system


1
Analysis of chaos in an electric network using
Lorenz system
  • presented by
  • Sandeep Arora
  • Graduate Student (EE)
  • Arizona State University

2
Contents
  • Chaos in electric networks
  • Lorenz system
  • Passive filters
  • Tests performed
  • Results
  • Conclusions

3
Chaos in electric networks
  • Main reason for chaos in electric networks is
    highly varying and unpredictable loads. Typical
    examples of such erratic loads
  • Arc loads ( arc furnace/welding, plasma torch)
  • Power electronic loads
  • Steel rolling mill

4
Chaos in electric networks
  • These loads are problematic because they cause
  • Voltage flicker
  • Unbalance of power in the circuit
  • Stress in the circuit

5
Outline of this project
  • Load voltage analysis of an R-L circuit using a
    clean current waveform at 60 Hz
  • Frequency and magnitude scaling of Lorenz system
    components x, y, z
  • Repetition of the above analysis with a chaotic
    current wave using Lorenz x
  • An attempt to attenuate chaos using a shunt
    capacitance and a tuned R-L-C filter

6
R-L circuit used in test
  • Parameter values used
  • R 0.2(ohms) L 0.001(H) RL 5(ohms)
  • Vs 5000cos(377t) Is 1000cos(377t)

7
R-L circuit analysis
  • Writing differential equations
  • Vs(t) - Vload(t) L(dI/dt) RI(t)
  • I(t) Is(t) Iload(t) (Is current source)
  • Vload IloadRL. (Voltage between 1-2)
  • For clean wave analysis
  • Is 1000cos(377t)
  • For chaotic wave analysis
  • Is m(Lorenz(x))

8
Analysis with clean wave
  • Load voltage vs time Load current vs time

9
FFT of load voltage using clean wave
  • N 2517
  • T 0.25 sec
  • DT 0.25/2517
  • Max at points(p)
  • 16 and 2503
  • DF 1/(NDT)
  • fmax (p-1)DF
  • 60 Hz
  • FFT

10
Lorenz System
  • Lorenz system is a chaotic attractor, defined by
    a set of three ordinary differential equations
  • (dx/dt) sigma(-x y)
  • (dy/dt) -xz gammax -y
  • (dz/dt) xy - bz.
  • The values chosen for these parameters
  • sigma 10 b 8/3 gamma 28

11
Lorenz System(contd.)
  • Graphical display of Lorenz system

12
FFT of Lorenz System
  • N 297
  • T 5 sec
  • DT 5/297
  • Max at point(p)
  • 7
  • DF 1/(NDT)
  • fmax (p-1)DF
  • 3 Hz
  • FFT

13
Modified Lorenz System
  • Frequency scaling factor k 30
  • Magnitude scaling factor m 250
  • Modified differential equations
  • (dx/dt) ksigma(-x y)
  • (dy/dt) k(-xz gammax -y)
  • (dz/dt) k(xy - bz).
  • Current source modification
  • Is m(Lorenz(x))

14
Lorenz System(contd.)
  • Graphical display of Lorenz system (k 30)

15
Lorenz System(3-D plot)
  • A plot between x, y and z for t5 s

16
FFT of modified Lorenz System
  • N 3553
  • T 2 sec
  • DT 2/3553
  • Max at point (p)
  • 6 or 3549
  • DF 1/(NDT)
  • fmax (p-1)DF
  • 2.5 Hz
  • Current FFT (k30)

17
Chaos in the circuit
  • Load voltage(T .25s) k 30, m 250
  • Load Voltage(T0.1s) k 1250, m 250

18
Passive Filters
  • Readily designed for harmonics
  • Usually based on the tuned resonance principal
    (providing low impedance path)
  • Types of filters
  • Shunt capacitor
  • R-L-C tuned filter
  • Band pass filter
  • High pass filter

19
Load voltage waveform using shunt capacitance
  • Parameter values used
  • R 0.2(ohms) L 0.001(H) RL 5(ohms)
  • C 0.025(F) Vs 5000cos(377t)

20
Circuit analysis
  • Writing differential equations
  • Vs(t) - Vload(t) L(dI/dt) RI(t)
  • I(t) Is(t) Iload(t) Ic(t)
  • (Is current source, Ic Current thru C)
  • Vload IloadRL (Voltage between 1-2)
  • Ic(t) C(dVload/dt)
  • Is(t) m(Lorenz(x))
  • Differential equations for modified LS

21
Load voltage waveform using tuned RLC filter
  • Rf, Lf, Cf are resistance, inductance and
    capacitance of the RLC tuned filter

22
Parameter selection
  • Based on dominant chaotic frequency and Quality
    Factor (QF) of RLC filter
  • QF OmegaLf/Rf should be kept low for a
    broadband filter/ (here QF 2, Rf 0.5)
  • Fd Dominant frequency in FFT of chaotic wave
  • Fr (Res. Freq.) Fd 1/(2pi(LfCf)1/2)
  • Lf 1/(2piFd), Cf 1/(Lf(2piFd)2)

23
Circuit analysis
  • Writing differential equations
  • Vs(t) - Vload(t) L(dI/dt) RI(t)
  • I(t) Is(t) Iload(t) If(t)
  • (Is current source, If Filter current)
  • Vload IloadRL (Voltage between 1-2)
  • Vload If(t)Rf Lf(dIf/dt) Vc
  • dVc/dt (1/Cf)If
  • Is(t) m(Lorenz(x))

24
An outline of the tests performed
  • Steps followed in tests performed
  • Voltage analysis of clean current wave
  • Voltage analysis of chaotic current wave
  • Detection of dominant chaotic frequency
  • Designing an appropriate filter to remove chaos
  • Comparison of filtered output with original clean
    wave

25
Test 1
  • Load voltage Vs time
  • (t 0.5 sec)
  • FFT of Is(chaotic)
  • K30 m250 fm2Hz

26
Load voltage Vs time (using filters)
  • Using shunt capacitor
  • C 100 micro Farads
  • Using a tuned filter
  • Res F 2 Hz, QF 2

27
Comparison of FFTs
  • FFT of load voltage without using filter
  • FFT of filtered output
  • load voltage

28
Test 2
  • Load voltage Vs time
  • (t 0.1 sec)
  • FFT of Is (k1250 m250 fm290Hz)

29
Load voltage Vs time (using filters)
  • Using shunt capacitor
  • C 0.025 Farads
  • Using a tuned filter,
  • Res F290 Hz, QF 2

30
Comparison of FFTs
  • FFT of load voltage without using filter
  • FFT of filtered output
  • load voltage

31
THD comparisons
32
Some more results
  • No chaos m250
  • k1000, Gamma23
  • Transient chaos
  • m 2500, Gamma23

33
Conclusions
  • As the frequencies of the chaotic component
    currents increase, it becomes relatively easier
    to filter chaos
  • A shunt capacitor performs better than a tuned
    filter if the chaotic component frequencies are
    high.
  • Broadband filters perform better than narrow
    tuned filters for chaotic signals
Write a Comment
User Comments (0)
About PowerShow.com