The enigmatic High Energy tail of the Cosmic Ray Spectrum - PowerPoint PPT Presentation

1 / 43
About This Presentation
Title:

The enigmatic High Energy tail of the Cosmic Ray Spectrum

Description:

Could be part of cold dark matter. CR's from decays of Z (n n CnB annihilations) ... Ice: RICE, ANITA. Salt: Salsa. Moon: Glue, Lunaska. Coherent sound (1500 ... – PowerPoint PPT presentation

Number of Views:61
Avg rating:3.0/5.0
Slides: 44
Provided by: MIPC4
Category:

less

Transcript and Presenter's Notes

Title: The enigmatic High Energy tail of the Cosmic Ray Spectrum


1
Enrique Zas University of Santiago de
Compostela Baeza February 5th 2008
The Ultra High Energy Realm
2
Outline
  • DAY 1
  • Ultra High Energy Cosmic Rays
  • Introduction and motivation
  • Extensive Air Showers and detection
  • Some preAuger data results
  • Origin Astrophysical versus top-down
  • The neutrino gamma ray proton connection
  • UHE Neutrino detection
  • Inclined showers
  • Coherent radio pulses from showers
  • DAY 2
  • The Auger Observatory, results

3
How do we learn about our large scale Universe?
  • Mainly by light
  • Directional gt imaging astronomy
  • Extended in wavelengths
  • Other particles challenge
  • Neutrinos (Sun, SN 1979A)
  • High energy charged particles
  • Diffuse spectra important (cummulative)
  • i.e. CMB Big Bang
  • Interrelated fluxes through production and
    interactions

4


Energy (eV) 10-8 10-6 10-4 10-2 1
102 104 106 108 1010 1012
1014 1016 1018 1020
Flux (cm2 s sr-1)
1012 1010 108 106 104 102 1 10-2
10-4 10-6 10-8 10-10 10-12 10-14 10-16
10-18 10-20
Diffuse spectra
CMB
CnB
g
Light
106 104 102 1 10-2 10-4 10-6
10-8 10-10 10-12 10-14 10-16 10-18 10-20
10-22 10-24 from M.T. Ressell M.S. Turner

Wavelength l (cm)
5
The discovery Victor Hess (1912)
  • Data
  • Ionization increases with height
  • Conclusion
  • Radiation coming to Earth

6
The Ultra High Energy Tail
Ankle
gt1020 eV 1 km-2 sr-1 century-1
T.K. Gaisser
7
Ultra High Energy Cosmic RaysScience motivation
  • Particle Physics
  • Test interactions at (always) highest energies
  • Test forward region
  • Astrophysics
  • Particle nature unknown (composition-origin)
  • Interplay p, Fe, g, n related to unknown origin
  • Acceleration (Bottom-up)
  • Fragmentation (Top-down)
  • Extragalactic sources gtCMB interactions
    (Cosmology-GZK)
  • Large E gt Small angular deviations
  • Astronomy
  • Learn about B fields

8
Nature always the source of highest energy
colisions
UHECR
LHC
Tevatron
HERA
Same cm energy
9
Energy Flow along beam pipe
  • Events triggered at accelerator experiments are
    those producing high-pT (large q) particles.
  • Soft collisions produce mainly low-pT particles,
    which escape undetected in the beam pipe.

10
LHCf an LHC Experiment to help UHECR physics
LHCf measurement of photons and neutral
pions and neutrons in the very forward region of
LHC Adding an EM calorimeter at 140 m from the
Interaction Point (IP1 ATLAS) For low luminosity
running
from Kakenhi agency in Japan
11
At UHE Only Extensive Air Showers detected
spread over tens of km in length several km
radius
The atmosphere is a calorimeter 30 X0 (vertical)
/ 1000 X0 (horizontal)
Composition inferred from shower
developmentgtExtrapolate HE
12
Require different techniques
Direct Balloon Satellite
compostion inferred HEP
compostion known (matter)
Indirect Air Showers
13
p
6 km
1019 eV proton
p-
g e m
p0
p
n m
n m-
g
g
e e-
12 km
e
g
e-
m
g
e
n
e
n
6 km
Simulation by Clem Prike
14
Heitler Model electromagnetic
  • Each particle carries Eparent/2
  • Stop _at_ Ecritical?c (85 MeV air)


d mean distance

d
...
?r 37 g cm-2 in air
(radiation length)
15
After n steps N particles (e,e-,g)
Number of particles at maximum (end)
  • Elaborate calculations
  • Xmax ln Eo
  • Eo Nmax
  • 85 (gcm-2)/decade

Energy related to Nmax Nmax
Xmax nclr ln2 lr ln Eo/?c
Elongation rate
2.3 ?r
16
Only two succesful techniques
Isotropic Fluorescence light from nitrogen
(aurora) (4 g per meter of track)
Fluorescence Technique
Particle array Technique
17
The Fluorescence Technique
Energy
Geometry Timing
Calorimetric
E_at_2.19 MeV Ne(x)dx
direction (noise)
C.Song et al., Astropart. Phys. 14, 7 (2000)
18
The particle array Technique
Er(600 m) r(1000 m)
19
Two methods at comptetion
  • Flourescence
  • Calorimetric E (Xmax)
  • Acceptance(E)
  • Corrections(t)
  • Absorption
  • Cherenkov
  • 10 duty cycle
  • Fluor yield(T,p)
  • Future (satellite)
  • EAS arrays
  • 1 layer calorimeter
  • Geometric Acceptance
  • Corrections
  • Fluctuations
  • Sampling
  • 100 duty cycle
  • Depth(T,p)
  • Limited size ?

20
The Ultra High Energy data
Flys Eye
Flys Eye
10 1 0.1
Flux E3 (1024 eV2 cm-2s-1sr-1 )
1017 1018
1019 1020 E(eV)
21
Flys Eye
10 1 0.1
Flux E3 (1024 eV2 cm-2s-1sr-1 )
HiRes 2
1017 1018
1019 1020 E(eV)
22
Flys Eye
qAgasa
10 1 0.1
Flux E3 (1024 eV2 cm-2s-1sr-1 )
HiRes 1
HiRes 2
1017 1018
1019 1020 E(eV)
23
qAgasa
Flys Eye
10 1 0.1
Flux E3 (1024 eV2 cm-2s-1sr-1 )
Haverah Park
HiRes 1
HiRes 2
1017 1018
1019 1020 E(eV)
24
Pre-Auger data disagreement
  • Fluorescence data
  • (Flys Eye HiRes)
  • Suggests GZK cutoff
  • No clustering evidence
  • Array data
  • (AGASA, HP, Yakutsk)
  • No GZK cutoff seen
  • Marginal clustering?

Both techniques Depend on Simulation
Int models but
  • Detect events above 1020 eV
  • Agree at UHE at the 2-s level

25
Astrophysical Origin?
26
Acceleration (2nd order Fermi 1949)
vout
vout
Magnetic cloud
Both gain and loss but head on encounters more
frequent Net acceleration
vin
v
vin
DE 4 v2 E 3 c2
Spectrum a E-g (g2.2-2.7)
1st order acceleration at shocks (more efficient)
27
Acceleration size (L) MUST EXCEED radius (RI)
p RI lt L
Z e B cos q
RG
RI
E lt Ze c BL
Diffusive propagation in accelerating region
28
The difficulty to accelerate particles
29
Fragmentation origin? top-down scenarios
Acceleration is bypassed UHECR from decay into q
/ g that fragment
  • CRs from decay of massive X particles (GUT)
  • Topological defects (annihilation, colisions,
  • Point Monopoles
  • Lines Strings (superconducting, cusps,
    necklaces, ...)
  • Surfaces Domain walls
  • Acceleration (Bottom-up)
  • Fragmentation (Top-down)
  • X particles are massive remnants
  • Could be part of cold dark matter
  • CRs from decays of Z (n n CnB annihilations)

30
The p(Fe)-g-n connection _at_ origin
  • Acceleration
  • Fragmentation

pg
q q X
p p0 p
p p0 p/- 0.03 0.3 0.65
pp
nm m
gg
p
nm ne e
g nm ne nm ne 2 2 1 2 1
p g n 0.09 2 6
p n 1 3
D threshold
31
The Greisen-Zatsepin-Kuzmin cutoff
pgCMB n p
nm m
D1232 resonance
pgCMB p p0
gg
Pair production lower threshold
lower cross section
by Ralph Engel
32
Expect Structure at a well defined energy
Threshold for eg 3 2.73 8.62 10-5 eV
(2mpmp)mp Ep 1020 eV
4 eg
GZK starts earlier (Wien tail)
33
Astronomy is possible
Protons deviate small angles above 5 1019 eV
Using the Larmor radius
RL Z e c B cos q E One can estimate the
angular deflection in the galaxy Structured B
fields of order a few mG over scale distances of
order kpc Typical deviations are given by
34
(No Transcript)
35
Neutrino detection
Ice AMANDA, IceCube Water Antares, km3Net, ...
Cherenkov light cone
muon
Detector
interaction
Lattice of Photomultipliers Optical Modules
Muon track direction from arrival time of
light Neutrino direction ? ?? ??? ? ? 0.7o /
E0.6(TeV) Atmospheric muons shielded by the Earth
neutrino
36
UHE neutrinos Detection alternatives
  • Inclined Showers Deep showers
  • Downgoing neutrinos interacting in the atmosphere
  • All flavors
  • Earth-skimming neutrinos
  • nt interacts at Earth crust
  • t exits to atmosphere
  • t decay generates an upcoming air shower
  • Coherent Radio pulses
  • Ice RICE, ANITA
  • Salt Salsa
  • Moon Glue, Lunaska
  • Coherent sound (1500 km3, 100 hydroph/km3)

37
Inclined showers Protons, nuclei, g Shower gs
es and e-s do not reach ground level Only
muons
Neutrinos interact deep gs es e-s reach
ground
38
(No Transcript)
39
(No Transcript)
40
Down-Going Shower Rate
p sr
10 -16 s sr cm2-1
1000 1010 cm2
10-32 cm2
3 107 s
500 6 1023 cm-2
Events in 1 year and 1000 km2 0.3
41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com