Quantum criticality - PowerPoint PPT Presentation

About This Presentation
Title:

Quantum criticality

Description:

Cenke Xu, Harvard Santa Barbara. HARVARD. The cuprate superconductors ... Jo, L. Balicas, J.-Q. Yan, J.-S. Zhou, J. B. Goodenough & Louis Taillefer, ... – PowerPoint PPT presentation

Number of Views:76
Avg rating:3.0/5.0
Slides: 127
Provided by: qptPhysic
Category:

less

Transcript and Presenter's Notes

Title: Quantum criticality


1
Quantum criticality and the phase diagram of the
cuprates
Talk online sachdev.physics.harvard.edu
2
Victor Galitski, Maryland Ribhu Kaul, Harvard
Kentucky Max Metlitski, Harvard Eun Gook Moon,
Harvard Yang Qi, Harvard Cenke Xu, Harvard
Santa Barbara
3
The cuprate superconductors
4
Square lattice antiferromagnet
Ground state has long-range Néel order
5
Central ingredients in cuprate phase diagram
antiferromagnetism, superconductivity, and change
in Fermi surface
6
(No Transcript)
7
Crossovers in transport properties of hole-doped
cuprates
N. E. Hussey, J. Phys Condens. Matter 20,
123201 (2008)
8
Crossovers in transport properties of hole-doped
cuprates
Strange metal
Pseudo- gap
N. E. Hussey, J. Phys Condens. Matter 20,
123201 (2008)
9
(No Transcript)
10
(No Transcript)
11
Square lattice antiferromagnet
Ground state has long-range Néel order
12
Square lattice antiferromagnet
J
J/
Weaken some bonds to induce spin entanglement in
a new quantum phase
13
Square lattice antiferromagnet
J
J/
Ground state is a quantum paramagnet with spins
locked in valence bond singlets
14
Pressure in TlCuCl3
Christian Ruegg, Bruce Normand, Masashige
Matsumoto, Albert Furrer, Desmond McMorrow, Karl
Kramer, HansUlrich Gudel, Severian Gvasaliya,
Hannu Mutka, and Martin Boehm, Phys. Rev. Lett.
100, 205701 (2008)
15
Canonical quantum critical phase diagram of
coupled-dimer antiferromagnet
S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411
(1992).
Christian Ruegg et al. , Phys. Rev. Lett. 100,
205701 (2008)
16
Crossovers in transport properties of hole-doped
cuprates
Strange metal
Pseudo- gap
17
Crossovers in transport properties of hole-doped
cuprates
Strange metal
S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411
(1992). A. J. Millis, Phys. Rev. B 48,
7183 (1993). C. M. Varma, Phys. Rev. Lett.
83, 3538 (1999).
Pseudo- gap
18
Only candidate quantum critical point observed at
low T
Strange metal
19
(No Transcript)
20
(No Transcript)
21
Large Fermi surfaces in cuprates
22
Spin density wave theory
23
Spin density wave theory
24
Hole-doped cuprates
Hole pockets
Electron pockets
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys.
Rev. B 51, 14874 (1995). A. V. Chubukov and D.
K. Morr, Physics Reports 288, 355 (1997).
25
Hole-doped cuprates
Hole pockets
Electron pockets
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys.
Rev. B 51, 14874 (1995). A. V. Chubukov and D.
K. Morr, Physics Reports 288, 355 (1997).
26
Spin density wave theory in hole-doped cuprates
Incommensurate order in YBa2Cu3O6x
A. J. Millis and M. R. Norman, Physical Review B
76, 220503 (2007). N. Harrison, Physical
Review Letters 102, 206405 (2009).
27
Electron-doped cuprates
D. Senechal and A.-M. S. Tremblay, Physical
Review Letters 92, 126401 (2004) J. Lin, and A.
J. Millis, Physical Review B 72, 214506 (2005).
28
Photoemission in NCCO
N. P. Armitage et al., Phys. Rev. Lett. 88,
257001 (2002).
29
Quantum oscillations
T. Helm, M. V. Kartsovnik, M. Bartkowiak, N.
Bittner, M. Lambacher, A. Erb, J. Wosnitza, and
R. Gross, Phys. Rev. Lett. 103, 157002 (2009).
30
Quantum oscillations
Nature 450, 533 (2007)
31
Quantum oscillations
Nature 450, 533 (2007)
32
Theory of quantum criticality in the cuprates
33
Evidence for connection between linear
resistivity and stripe-ordering in a cuprate with
a low Tc
Linear temperature dependence of resistivity and
change in the Fermi surface at the pseudogap
critical point of a high-Tc superconductor R.
Daou, Nicolas Doiron-Leyraud, David LeBoeuf, S.
Y. Li, Francis Laliberté, Olivier Cyr-Choinière,
Y. J. Jo, L. Balicas, J.-Q. Yan, J.-S. Zhou, J.
B. Goodenough Louis Taillefer, Nature Physics
5, 31 - 34 (2009)
34
Theory of quantum criticality in the cuprates
35
(No Transcript)
36
(No Transcript)
37
(No Transcript)
38
Theory of quantum criticality in the cuprates
39
Theory of quantum criticality in the cuprates
40
Theory of quantum criticality in the cuprates
41
Theory of quantum criticality in the cuprates
42
Theory of quantum criticality in the cuprates
Criticality of the coupled dimer antiferromagnet
at xxs
43
Theory of quantum criticality in the cuprates
Criticality of the topological change in Fermi
surface at xxm
44
(No Transcript)
45
(No Transcript)
46
Hc2
Quantum oscillations
47
Hsdw
48
Hsdw
49
B. Lake, H. M. Rønnow, N. B. Christensen, G.
Aeppli, K. Lefmann, D. F. McMorrow, P.
Vorderwisch, P. Smeibidl, N. Mangkorntong, T.
Sasagawa, M. Nohara, H. Takagi, and T. E. Mason,
Nature 415, 299 (2002)
B. Lake, G. Aeppli, K. N. Clausen, D. F.
McMorrow, K. Lefmann, N. E. Hussey, N.
Mangkorntong, M. Nohara, H. Takagi, T. E.
Mason, and A. Schröder Science 291, 1759 (2001).
50
(No Transcript)
51
J. Chang, Ch. Niedermayer, R. Gilardi,
N.B. Christensen, H.M. Ronnow,
D.F. McMorrow, M. Ay, J. Stahn, O. Sobolev,
A. Hiess, S. Pailhes, C. Baines, N. Momono, M.
Oda, M. Ido, and J. Mesot, Physical Review B 78,
104525 (2008).
J. Chang, N. B. Christensen, Ch.
Niedermayer, K. Lefmann, H. M. Roennow, D.
F. McMorrow, A. Schneidewind, P. Link, A.
Hiess, M. Boehm, R. Mottl, S. Pailhes, N.
Momono, M. Oda, M. Ido, and J. Mesot, Phys. Rev.
Lett. 102, 177006 (2009).
52
D. Haug, V. Hinkov, A. Suchaneck, D. S. Inosov,
N. B. Christensen, Ch. Niedermayer, P. Bourges,
Y. Sidis, J. T. Park, A. Ivanov, C. T. Lin, J.
Mesot, and B. Keimer, Phys. Rev. Lett. 103,
017001 (2009)
53
(No Transcript)
54
(No Transcript)
55
E. M. Motoyama, G. Yu, I. M. Vishik, O. P. Vajk,
P. K. Mang, and M. Greven,Nature 445, 186 (2007).
56
(No Transcript)
57
V. Galitski and S. Sachdev, Physical Review B
79, 134512 (2009).
Eun Gook Moon and S. Sachdev, Physical Review B
80, 035117 (2009).
58
V. Galitski and S. Sachdev, Physical Review B
79, 134512 (2009).
Eun Gook Moon and S. Sachdev, Physical Review B
80, 035117 (2009).
59
Similar phase diagram for CeRhIn5
G. Knebel, D. Aoki, and J. Flouquet,
arXiv0911.5223
60
(No Transcript)
61
(No Transcript)
62
(No Transcript)
63
(No Transcript)
64
(No Transcript)
65
(No Transcript)
66
(No Transcript)
67
Hertz-Moriya-Millis (HMM) theory
68
Hertz-Moriya-Millis (HMM) theory
Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett.
93, 255702 (2004).
69
(No Transcript)
70
(No Transcript)
71
(No Transcript)
72
(No Transcript)
73
Max Metlitski
M. Metlitski and S. Sachdev, to appear Ar.
Abanov, A.V. Chubukov, and J. Schmalian,
Advances in Physics 52, 119 (2003)
Sung-Sik Lee, arXiv0905.4532.
74
Hole-doped cuprates
Hole pockets
Electron pockets
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys.
Rev. B 51, 14874 (1995). A. V. Chubukov and D.
K. Morr, Physics Reports 288, 355 (1997).
75
Hole-doped cuprates
Hole pockets
Electron pockets
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys.
Rev. B 51, 14874 (1995). A. V. Chubukov and D.
K. Morr, Physics Reports 288, 355 (1997).
76
(No Transcript)
77
(No Transcript)
78
(No Transcript)
79
Y. Huh and S. Sachdev, Phys. Rev. B 78, 064512
(2008).
80
(No Transcript)
81
RG-improved Migdal-Eliashberg theory
82
RG-improved Migdal-Eliashberg theory
83
RG-improved Migdal-Eliashberg theory
84
RG-improved Migdal-Eliashberg theory
Dynamical Nesting
Bare Fermi surface
85
RG-improved Migdal-Eliashberg theory
Dynamical Nesting
Dressed Fermi surface
86
RG-improved Migdal-Eliashberg theory
Dynamical Nesting
Bare Fermi surface
87
RG-improved Migdal-Eliashberg theory
Dynamical Nesting
Dressed Fermi surface
88
RG-improved Migdal-Eliashberg theory
89
(No Transcript)
90
Dangerous
91
(No Transcript)
92
(No Transcript)
93
R. Shankar, Rev. Mod. Phys. 66, 129 (1994). S. W.
Tsai, A. H. Castro Neto, R. Shankar, and D. K.
Campbell, Phys. Rev. B 72, 054531 (2005).
94

95

Graph is planar after turning fermion propagators
also into double lines by drawing additional
dotted single line loops for each fermion loop
Sung-Sik Lee, arXiv0905.4532
96

A consistent analysis requires resummation of all
planar graphs
97
Theory for the onset of spin density wave order
in metals is strongly coupled in two dimensions
98
(No Transcript)
99
(No Transcript)
100
(No Transcript)
101
Theory of underdoped cuprates
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys.
Rev. B 51, 14874 (1995). A. V. Chubukov and D.
K. Morr, Physics Reports 288, 355 (1997).
102
Theory of underdoped cuprates
H. J. Schulz, Physical Review Letters 65, 2462
(1990) B. I. Shraiman and E. D. Siggia, Physical
Review Letters 61, 467 (1988). J. R. Schrieffer,
Journal of Superconductivity 17, 539 (2004)
103
Theory of underdoped cuprates
104
Theory of underdoped cuprates
105
Quantum phase transitions in metal
S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu,
Physical Review B 80, 155129 (2009)
106
Quantum phase transitions in metal
Fermi liquid phases
S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu,
Physical Review B 80, 155129 (2009)
107
Quantum phase transitions in metal
S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu,
Physical Review B 80, 155129 (2009)
108
Quantum phase transitions in metal
S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu,
Physical Review B 80, 155129 (2009)
109
Theory of underdoped cuprates
110
Theory of underdoped cuprates
111
R. K. Kaul, Y. B. Kim, S. Sachdev, and T.
Senthil, Nature Physics 4, 28 (2008)
Y. Qi and S. Sachdev, arXiv0912.xxxx
112
Theory of underdoped cuprates
113
Theory of underdoped cuprates
114
_


_
R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke
Xu, Phys. Rev. B 78, 045110 (2008).
V. Galitski and S. Sachdev, Physical Review B
79, 134512 (2009).
Eun Gook Moon and S. Sachdev, Physical Review B
80, 035117 (2009).
115
_



_
116
-2e bosons at antinodes, e fermion arcs at
nodes, and proximity Josephson coupling
Similar features in our theory
V. Galitski and S. Sachdev, Physical Review B 79,
134512 (2009).
117
(No Transcript)
118
Naturally formulated in route B theory of
fluctuating Fermi pockets
119
VBS and/or nematic
Onset of superconductivity induces confinement
R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke
Xu, Physical Review B 78, 045110 (2008).
120
Nature Physics 4, 696 (2008)
121
S. A. Kivelson, E. Fradkin, and V. J. Emery,
Nature 393, 550 (1998).
Nematic order in YBCO
V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y.
Sidis, A. Ivanov, C. Bernhard, C. T. Lin, and B.
Keimer , Science 319, 597 (2008)
122
Broken rotational symmetry in the pseudogap phase
of a high-Tc superconductor
R. Daou, J. Chang, David LeBoeuf, Olivier
Cyr-Choiniere, Francis Laliberte, Nicolas
Doiron-Leyraud, B. J. Ramshaw, Ruixing Liang, D.
A. Bonn, W. N. Hardy, and Louis Taillefer arXiv
0909.4430, Nature, in press
123
VBS and/or nematic
Onset of superconductivity induces confinement
R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke
Xu, Physical Review B 78, 045110 (2008).
124
(No Transcript)
125
Conclusions
Identified quantum criticality in cuprate
superconductors with a critical point at optimal
doping associated with onset of spin density wave
order in a metal
Elusive optimal doping quantum critical point has
been hiding in plain sight. It is shifted to
lower doping by the onset of superconductivity
126
Conclusions
Theory for the onset of spin density wave order
in metals is strongly coupled in two dimensions
Write a Comment
User Comments (0)
About PowerShow.com