An Invariant Large Margin Nearest Neighbour Classifier - PowerPoint PPT Presentation

1 / 1
About This Presentation
Title:

An Invariant Large Margin Nearest Neighbour Classifier

Description:

Aim: To learn a distance metric for invariant nearest neighbour classification ... Timings. Precision-Recall. http://cms.brookes.ac.uk/research/visiongroup ... – PowerPoint PPT presentation

Number of Views:38
Avg rating:3.0/5.0
Slides: 2
Provided by: bnk2
Category:

less

Transcript and Presenter's Notes

Title: An Invariant Large Margin Nearest Neighbour Classifier


1
An Invariant Large Margin Nearest Neighbour
Classifier
Vision Group, Oxford Brookes University
Visual Geometry Group, Oxford University
http//cms.brookes.ac.uk/research/visiongroup
http//www.robots.ox.ac.uk/vgg
Aim To learn a distance metric for invariant
nearest neighbour classification
Results
Regularization
  • Prevent overfitting
  • Retain convexity

Matching Faces from TV Video
min ? i M(i,i)
Minimize L2 norm of parameter L
  • L2-LMNN

M(i,j) 0, i ? j
Learn diagonal L ? diagonal M
  • D-LMNN

Nearest Neighbour Classifier (NN)
11 characters 24,244 faces
min ? i,j M(i,j), i ? j
  • Find nearest neighbours, classify
  • Typically, Euclidean distance used
  • Multiple classes
  • Labelled training data
  • DD-LMNN

Learn a diagonally dominant M
Adding Invariance using Polynomial Transformations
Large Margin NN (LMNN)
Weinberger, Blitzer, Saul - NIPS 2005
Invariance to changes in position of features
Polynomial Transformations
2D Rotation Example
Euclidean Transformation
x Lx
Same class points closer
1
cos ?
-sin ?
-(?-?3/6)
1-?2/2
a
a
a
b
-a/2
b/6
-5o ? 5o
-3 tx 3 pixels
-3 ty 3 pixels

?
?
min ? ij dij (xi-xj)TLTL(xi-xj)
b
sin ?
b
a
-b/2
-a/6
b
cos ?
(?-?3/6)
1-?2/2
RD RD
?2
?3
True Positives
Univariate Transformation
First Experiment (Exp1)
X
?
Taylors Series Approximation
X
min ? ij (xi-xj)TM(xi-xj)
  • Randomly permute data
  • Train/Val/Test - 30/30/40
  • Suitable for NN

xi
xj
  • Multivariate Polynomial Transformations -
    Euclidean, Similarity, Affine

M 0 (Positive Semidefinite)
  • Commonly used in Computer Vision
  • General Form T(x,?) X ?

Euclidean Distance
Second Experiment (Exp2)
Different class points away
A Property of Polynomial Transformations
dij
SD - Representability
  • No random permutation
  • Train/Val/Test - 30/30/40
  • Not so suitable for NN

(xi-xk)TM(xi-xk)- (xi-xj)TM(xi-xj)
?1
P 0
xk
Dij
1 - eijk
xi
xj
Lasserre, 2001
Mij
Accuracy
?
mij
min ? ijk eijk, eijk 0
Semidefinite Program (SDP)
P 0
?2
(?1 ,?2)
Learnt Distance
Globally Optimum M (and L)
Distance between Polynomial Trajectories
SD - Representability of Segments
Sum of Squares Of Polynomials
Drawbacks
-T ? T
  • Overfitting - O(D2) parameters

Invariant LMNN (ILMNN)
x Lx
  • No invariance to transformations

dij
Minimize Max Distance of same class trajectories
Current Fix
Euclidean Distance
xi
xj
  • Use rank deficient L (non-convex)

Non-convex
Euclidean Distance
Mij
  • Add synthetically transformed data

Approximation ?ijdij
?ij
Precision-Recall
Timings
?1
mij
  • Inefficient
  • Inaccurate

min ? ij ?ijdij
Dik(?1, ?2)
E X P 1
Euclidean Distance
Maximize Min Distance of different class
trajectories
xk
?2
Transformation Trajectory
Finite Transformed Data
Learnt Distance
Dik(?1, ?2) - ?ijdij 1 - eijk
E X P 2
Our Contributions
Overcome above drawbacks of LMNN
Pijk 0
(SD-representability)
Convex SDP
  • Regularization of parameters L or M

Preserve Convexity
min ? ijk eijk, eijk 0
  • Invariance to Polynomial Transformations

Learnt Distance
Write a Comment
User Comments (0)
About PowerShow.com