First Principles Thermoelasticity of Minerals: Insights into the Earth - PowerPoint PPT Presentation

1 / 46
About This Presentation
Title:

First Principles Thermoelasticity of Minerals: Insights into the Earth

Description:

Insights into the Earth's LM. Problems related with seismic observations ... (MLDB-Masters et al., 2000) (SD-Su & Dziewonski, 1997) Lateral variations in V and VP ... – PowerPoint PPT presentation

Number of Views:33
Avg rating:3.0/5.0
Slides: 47
Provided by: cems1
Learn more at: https://cse.umn.edu
Category:

less

Transcript and Presenter's Notes

Title: First Principles Thermoelasticity of Minerals: Insights into the Earth


1
First Principles Thermoelasticity of
MineralsInsights into the Earths LM
Renata M. Wentzcovitch U.
of Minnesota (USA) and SISSA (Italy)
Problems related with seismic observations
T and composition in the lower
mantle Origin of lateral
heterogeneities Origin of
anisotropies How and what we calculate
MgSiO3-perovskite
MgO Geophysical inferences Future
directions
2
The Contribution from Seismology
Longitudinal (P) waves
Transverse (S) wave
from free oscillations
3
PREM (Preliminary Reference Earth
Model)(Dziewonski Anderson, 1981)
P(GPa)
0
24
135
329
364
4
Mantle Mineralogy
MgSiO3
Pyrolite model ( weight)
opx
100
4
Olivine
SiO2 45.0 MgO 37.8 FeO
8.1 Al2O3 4.5 CaO 3.6 Cr2O3
0.4 Na2O 0.4 NiO
0.2 TiO2 0.2 MnO
0.1 (McDonough and Sun, 1995)
8
cpx
(Mg1--x,Fex)2SiO4
300
(Mg,Ca)SiO3
12
P (Kbar)
Depth (km)
garnets
16
500
?-phase
()
(Mg,Al,Si)O3
20
spinel
()
700
perovskite
MW
(Mg,Fe) (Si,Al)O3
CaSiO3
60
20
40
80
100
0
(Mg1--x,Fex) O
V
5
Mantle convection
6
Temperature and Composition of LM
7
Lateral Heterogeneities
8
3D Maps of Vs and Vp
(Masters et al, 2000)
Vs
V?
Vp
9
Lateral variations in VS and VP
(Karato Karki, JGR 2001)
(MLDB-Masters et al., 2000) (KWH-Kennett et al.,
1998) (SD-Su Dziewonski, 1997) (RW-Robertson
Woodhouse,1996)
10
Lateral variations in V? and VP
(MLDB-Masters et al., 2000) (SD-Su Dziewonski,
1997)
(Karato Karki, 2001)
11
Relations
0.42 A 0.37
with
(Karato Karki, 2001)
12
Anisotropy
?

?
isotropic
azimuthal
VP VS1 VS2
VP (?,?) VS1 (?,?) ? VS2 (?,?)
transverse
VP (?) VS1 (?) ? VS2 (?)
13
Anisotropy in the Earth
(Karato, 1998)
14
Mantle Anisotropy
SHgtSV
SVgtSH
15
Slip systems and LPO
Zinc wire
Slip system
F
16
Anisotropic Structures
(SPO)
(LPO)
Shape Preferred Orientation
Lattice Preferred Orientation
Mantle flow geometry
LPO
Seismic anisotropy
slip system
Cij
17
Mineral sequence II
Upper Mantle
Transition Zone
410 km
(Spinel)
(520 km (?))
(Mgx,Fe(1-x))2SiO4 (Olivine)
Lower Mantle
670 km

(Mgx,Fe(1-x))O
(Mgx,Fe(1-x))SiO3
18
Method
  • Structural optimizations
  • First principles variable cell shape MD for
    structural optimizations
  • xxxxxxxxxxxxxxxxxx(Wentzcovitch, Martins, Price,
    1993)
  • Self-consistent calculation of forces and
    stresses (LDA-CA)
  • Phonon thermodynamics
  • Density Functional Perturbation Theory
  • xxxxxxxxxxxxxxxxxx(Gianozzi, Baroni, and de
    Gironcoli, 1991)

  • (http//www.pwscf.com)
  • Soft separable pseudopotentials
    (Troullier-Martins)

19
Typical Computational Experiment
Damped dynamics (Wentzcovitch, 1991)
P 150 GPa
20
abcxP
(a,b,c)th lt (a,b,c)exp 1
Tilt angles ?th - ?exp lt 1deg
Kth 259 GPa Kth3.9
Kexp 261 GPa Kexp4.0
( Wentzcovitch, Martins, Price, 1993)
( Ross and Hazen, 1989)
21
Elastic constant tensor ?
?ij
cijkl
?kl
?kl
equilibrium structure
(i,j) m
re-optimize
Crystal (Pbnm)
22
Elastic Waves
P-wave (longitudinal)
S-waves (shear)
n propagation direction
Yegani-Haeri, 1994 Wentzcovitch et al, 1995 Karki
et al, 1997
within 5
23
Wave velocities in perovskite (Pbnm)
Cristoffels eq.
with
is the propagation direction
24
Anisotropy
P-azimuthal S-azimuthal
S-polarization
25
Poly-Crystalline aggregate
Voigt-Reuss averages

Voigt uniform strain
Reuss uniform stress
26
Polarization anisotropy in transversely isotropic
medium
(Karki et al. 1997 Wentzcovitch et al1998)
Seismic anisotropy Isotropic in bulk LM 2 VSH gt
VSV in
-
-
SH/SV Anisotropy ()
High P, slip systems MgO 100 ?
(c44 lt c11-c12) MgSiO3 pv 010 ? (soft
c55)
-
27
Theory x PREM
28
Acoustic Velocities of Potential LM Phases
(Karki, Stixrude, Wentzcovitch,2001)
29
Effect of Fe alloying
  • (Kiefer, Stixrude,Wentzcovitch,2002)
  • (Mg0.75Fe0.25)SiO3
  • ?K (P0 GPa) 2
  • ?K (P135 GPa) 1
  • ?G (P 0 GPa) - 6
  • ?G (P 135 GPa) - 8

30
TM of mantle phases
CaSiO3
(Mg,Fe)SiO3
5000
Mw
Core T
4000
HA
solidus
T (K)
3000
Mantle adiabat
2000
peridotite
0
40
20
60
80
100
120
P(GPa)
(Zerr, Diegler, Boehler, 1998)
31
High Temperature calculations
  • MgO and MgSiO3 perovskite
  • Phonon dispersions from density functional
    perturbation theory (DFPT).
  • Quasiharmonic approximation (QHA) and thermal
    properties (e.g., ?, CP, S, KS,T, Cijs).

32
Phonon dispersions in MgO
(Karki, Wentzcovitch, de Gironcoli and Baroni,
PRB 61, 8793, 2000)
-
Exp Sangster et al. 1970
33
Phonon dispersion of MgSiO3 perovskite
Calc Exp
-
Calc Exp
0 GPa
-
Calc Karki, Wentzcovitch, Gironcoli, Baroni
PRB 62, 14750, 2000 Exp Raman Durben and
Wolf 1992 Infrared Lu et al. 1994
100 GPa
34
Quasiharmonic approximation
MgO
-
static
zero-point
-
F (Ry)
-
thermal
-
4th order finite strain equation of state
Static 300K Exp (Fei
1999) V (Å3) 18.5 18.8
18.7 K (GPa) 169 159 160 K
4.18 4.30
4.15 K(GPa-1) -0.025 -0.030
Volume (Å3)
35
Thermal expansivity of MgO and MgSiO3
(Karki, Wentzcovitch, de Gironcoli and Baroni,
Science 286, 1705, 1999)
? (10-5 K-1)
36
Elastic moduli of MgO
(Karki, Wentzcovitch, de Gironcoli and Baroni,
Science 286, 1705, 1999)
EoS K (c11 2c12 )/3 Tetragonal strain cs
c11 - c12 Shear strain c44
37
Elastic moduli of MgO at high P and T
(Karki et al., Science 1999)
38
Elastic anisotropy of MgO
(Karki et al., 1997, 1999)
Velocity anisotropy
-
39
Adiabatic bulk modulus at LM P-T
(Karki, Wentzcovitch, de Gironcoli and Baroni,
GRL, 2001)
40
LM geotherms
41
Elasticity of MgSiO3 at LM Conditions
42
Adiabatic Moduli
where
43
Seismic Velocities
44
Summary
  • Building a consistent body of knowledge obout LM
    phases
  • QHA is suitable for studying thermal properties
    of minerals at LM conditions
  • A homogeneous and adiabatic LM model appears to
    be incompatible with PREM.
  • LPO in aggregates of MgO and MgSiO3 can exhibit
    strong anisotropy at LM conditions.
  • We have all ingredients now to re-examine what
    has been said about lateral variations.

45
Future directions
  • Properties of solid solutions, e.g., Fe, Al,
    bearing perovskites and oxides
  • Rheology (deformations, slip systems, diffusion,
    anelasticity) of materials
  • Computationally intensive, e.g, large-scale MD
    simulations!!

46
Acknowledgements
Bijaya B. Karki (U. Of MN) Lars Stixrude (Ann
Arbor) Shun-ichiro Karato (U. of MN) Stefano de
Gironcoli (SISSA) Stefano Baroni
(SISSA) Funding NSF/EAR
Write a Comment
User Comments (0)
About PowerShow.com