Inferring neutrino cross sections above 1019 eV - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

Inferring neutrino cross sections above 1019 eV

Description:

Constraints from shower development and identification ... D. J. Bird et al., Astrophys. J. 441:144, 1995. Fly's Eye 320 EeV event. September 22, 2006 ... – PowerPoint PPT presentation

Number of Views:27
Avg rating:3.0/5.0
Slides: 18
Provided by: sergi116
Category:

less

Transcript and Presenter's Notes

Title: Inferring neutrino cross sections above 1019 eV


1
Inferring neutrino cross sections above 1019 eV
  • Workshop on Exotic Physics with Neutrino
    Telescopes
  • Uppsala, Sweden, September 20-22, 2006

based on SPR, A. Irimia and T. J. Weiler, Phys.
Rev. D73 083003, 2006
2
Why ultrahigh energy neutrinos?
  • Neutrinos point back to their cosmic sources
  • Above GZK energy ( 5 x 1019 eV), they may be the
    only propagating primaries
  • Neutrinos are little affected by the ambient
    matter carry information about the central
    engine
  • Neutrinos carry a quantum number that cosmic rays
    and photons do not have flavor
  • Travel over cosmic distances allows studies of
    their fundamental properties stability,
    pseudo-Dirac mass patterns
  • Extreme energies allow studies of neutrino cross
    sections beyond the reach of terrestrial
    accelerators

3
?-N cross section extrapolations to low-x
K. Kutak and J. Kwiecinski, Eur. Phys. J.
C29521, 2003
E. M. Henley and J. Jalilian-Marian, Phys. Rev.
D73094004, 2006
L. A. Anchordoqui, A. M. Cooper-Sarkar, D. Hooper
and S. Sarkar, Phys. Rev. D74043008, 2004
4
?-N cross section new physics thresholds
Black Hole production
p-brane production
J. L. Feng and A. D. Shapere, Phys. Rev. Lett.
88021303, 2002
L. A. Anchordoqui, J. L. Feng and H. Goldberg,
Phys. Lett. B535302, 2002
EW instanton effects
Exchange of KK modes
F. Bezrukov et al., Phys. Rev. D68036005,
2003 and Phys. Lett. B57475, 2003
  • Ringwald,
  • Phys. Lett. B555227, 2003

M. Kachelriess and M. Plümacher, Phys. Rev.
D62103006, 2000
T. Han and D. Hooper, Phys. Lett. B58221, 2004
5
?-N cross section bounds
HERA experiments in the lab E 52 TeV ? 2
10-34 cm2
Using RICE data
I. Kravchenko et al., Phys Rev. D73082002, 2006
V. Barger, P. Huber and D. Marfatia,
hep-ph/0606311
6
Fluorescence detectors
  • Two types of events
  • Neutrino-induced Horizontal Air-Showers (HAS)
  • NC 20 energy transfer and 44 smaller cross
    section only CC ?e
  • Neutrino-induced Upgoing Air-Showers (UAS) ?
    decay 64 hadrons (2/3 E? into shower), 18
    electrons (1/3 E? into shower), 18 muons
  • Two types of experiments
  • Ground-based HiRes, Auger
  • Space-based EUSO, OWL

UAS
??
?
?e
HAS
7
Inference of the ?-N cross section at UHE
  • Ratio HAS/UAS
  • HAS atmosphere is a low density medium Rate / ?
  • UAS Earth opaque for E? gt PeV ? only
    Earth-skimming neutrinos
  • ?? ! ? process / 1/?
  • More complicated dependence due to the ? ! shower
    process in the atmosphere

A. Kusenko and T. J. Weiler, Phys. Rev. Lett.
88161101, 2002
8
Improvements
  • Inclusion of energy dependences of the ? energy
    losses in the Earth and of the ? lifetime in the
    atmosphere (for UAS)
  • Inelasticity of ?? ? ? ltygt0.2 (for UAS)
  • Distinction between ? propagation in rock and
    water (for UAS)

SPR, A. Irimia and T. J. Weiler, Phys. Rev. D73
083003, 2006
9
Improvements
  • Constraints from shower development and
    identification
  • Minimum projected length of the shower track
    lmin
  • Minimum column density beyond the point of shower
    initiation (for the shower to develop in
    brightness) dmin
  • Maximum column density (after which shower
    particles are below threshold for excitation of
    N2 molecules) dmax
  • Too-thin altitude beyond which the signal becomes
    imperceptible zthin

SPR, A. Irimia and T. J. Weiler, Phys. Rev. D73
083003, 2006
10
  • For EUSO, each pixel is a map of km2
    lmin 5, 10 km
  • dmin 300-400 g/cm2
  • dmax 1200-1500 g/cm2
  • zthin 3 h 24 km
  • ?(z) ?0 e-z/h

Flys Eye 320 EeV event
D. J. Bird et al., Astrophys. J. 441144, 1995
SPR, A. Irimia and T. J. Weiler, Phys. Rev. D73
083003, 2006
11
Improvements
  • Corrections from Earth curvature (for UAS)
  • ? (1020 eV) 4900 km REarth 6371 km
  • Curvature-corrected altitude is increased
  • Curvature-corrected angle with respect to horizon
    is increased
  • Overall effect ? overestimate the air density for
    shower development

SPR, A. Irimia and T. J. Weiler, Phys. Rev. D73
083003, 2006
12
Improvements
  • Effects of a cloud layer
  • Simplified model infinitely thin layer with
    infinite optical depth
  • The constraints depend on whether the detector is
    space-based or ground-based straightforward
    implementation for UAS?G and HAS?S
  • Critical altitude for UAS below which
  • clouds obscure detector
  • for UAS?G
  • clouds have no effect
  • for UAS?S

SPR, A. Irimia and T. J. Weiler, Phys. Rev. D73
083003, 2006
13
Cloudless case
lmin 10 km
lmin 5 km
ocean
Eth 1019 eV
land
Eth 5 1019 eV
ocean
land
SPR, A. Irimia and T. J. Weiler, Phys. Rev. D73
083003, 2006
14
Cloudy case
lmin 5 km zcloud 2 km
ground-based
space-based
ocean
Eth 1019 eV
land
Eth 5 1019 eV
ocean
land
SPR, A. Irimia and T. J. Weiler, Phys. Rev. D73
083003, 2006
15
Other dependences for space detectors
Eth 1019 eV
Eth 5 1019 eV
lmin 5 km ocean E? 1020 eV
dotted without Earth-curvature dashed with
Earth-curvature thick zcloud 4 km thin
zcloud 12 km
Dependence of Acc on cloud altitude
(dmax, dmin, lmin) solid (0 g/cm2, 105
g/cm2, 0 km) dashed (300 g/cm2, 1500 g/cm2, 5
km) dotted (300 g/cm2, 1500 g/cm2, 10
km) dash-dotted (400 g/cm2, 1200 g/cm2, 10 km)
Dependence of Acc on dmin, dmax , lmin
SPR, A. Irimia and T. J. Weiler, Phys. Rev. D73
083003, 2006
16
Prospects
25600 km2
EUSO FOV 170000 km2
L. A. Anchordoqui, A. M. Cooper-Sarkar, D. Hooper
and S. Sarkar, Phys. Rev. D74043008, 2004
17
Conclusions
  • Comparison of HAS and UAS rates in neutrino
    observatories may allow us to infer a
    neutrino-nucleon cross section different from the
    commonly used extrapolation at ultra high
    energies
  • We have presented a mostly analytic and detailed
    extension of Kusenko and Weilers idea for
    ground- and space-based detectors
  • Included in the calculation are the dependences
    of the acceptances on the initial neutrino
    energy, trigger threshold, composition of the
    Earth, several shower parameters, cloud layers of
    arbitrary altitude and Earths curvature effects
  • Our calculation is valid for the energy range
    1018-1021 eV
  • We can establish the no-lose theorem
    acceptances are robust regardless of the cross
    section value
  • Odds we assume
  • to know the flavor ratio at the detector
  • a small NC/CC ratio
  • inelasticities as in the SM
Write a Comment
User Comments (0)
About PowerShow.com