Recent Results from KamLAND - PowerPoint PPT Presentation

1 / 73
About This Presentation
Title:

Recent Results from KamLAND

Description:

Recent Results from KamLAND – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 74
Provided by: bobmc8
Learn more at: https://www.phy.bnl.gov
Category:
Tags: kamland | ainu | recent | results

less

Transcript and Presenter's Notes

Title: Recent Results from KamLAND


1
Recent Results from KamLAND
  • R. D. McKeown
  • Caltech

BNL January 17, 2006
2
Outline
  • Historical Introduction
  • Neutrino physics
  • Neutrino mixing and oscillations
  • KamLAND reactor neutrino results
  • Geoneutrinos
  • Future prospects

3
Discovery of the Neutrino 1956
F. Reines, Nobel Lecture, 1995
4
Subsequent History
  • 60s and 70s n became the darling of
    accelerator-based particle physics
  • ne ? nm
  • 1968 1st solar n anomaly evidence
  • 1980s new interest in neutrino oscillations
    (F. Reines, ..)
  • 1980-present the quest for neutrino oscillations
  • 1998 evidence from Super-K

5
Super-Kamiokande Results
6
Two Generation Model
7
Missing solar neutrinos
8
(No Transcript)
9
(No Transcript)
10
Matter Enhanced Oscillation (MSW)
Mikheyev, Smirnov, Wolfenstein
11
Maki Nakagawa Sakata Matrix
CP violation
12
Pre KamLAND summary
  • Persistent observations of deficit of solar
    neutrinos
  • 1998 observation of oscillations of atmospheric
    neutrinos by Super-K
  • 2002 SNO results imply matter-dependent
    oscillations of solar neutrinos

Time to get our feet on the ground!!
13
W.A. Fowler Nobel Lecture, 1983
14
(No Transcript)
15
Enter
  • Long Baseline (180 km)
  • Calibrated source(s)
  • Large detector (1 kton)
  • Deep underground (2700 mwe)

16
Neutrino Oscillation Studies with Nuclear
Reactors
  • ne from n-rich fission products
  • detection via inverse beta decay (nepgen)
  • Measure flux and energy spectrum
  • Improve detectors, reduce background
  • Variety of distances L 10-1000 m

17
Detection Signal
  • Coincidence signal detect
  • Prompt e annihilation g
    EnEpromptEn0.8 MeV
  • Delayed n capture 180 ms capture time

18
(No Transcript)
19
The Reactor Neutrino Flux and Spectrum
  • 235U, 239Pu, 241Pu from b measurements
  • 238U calculated
  • Time dependence due to fuel cycle

20
Precise Measurements
Flux and Energy Spectrum g 1-2
21
Negative Oscillation Searches
103
Distance (m)
22
The BIG picture
(From PDG)
SK atm (nmgnt)
23
KamLAND uses the entire Japanese nuclear
power industry as a longbaseline source
24
Many reactors contribute to the antineutrino flux
at KamLAND
Site Site Dist (km) Cores () Ptherm (GW) Flux (cm-2 s-1) Rate noosc (yr-1 kt-1)
Japan Kashiwazaki 160 7 24.3 4.1105 254.0
Japan Ohi 179 4 13.7 1.9105 114.3
Japan Takahama 191 4 10.2 1.2105 74.3
Japan Tsuruga 138 2 4.5 1.0105 62.5
Japan Hamaoka 214 4 10.6 1.0105 62.0
Japan Mihama 146 3 4.9 1.0105 62.0
Japan Sika 88 1 1.6 9.0104 55.2
Japan Fukushima1 349 6 14.2 5.1104 31.1
Japan Fukushima2 345 4 13.2 4.8104 29.5
Japan Tokai2 295 1 3.3 1.6104 10.1
Japan Onagawa 431 3 6.5 1.5104 9.3
Japan Simane 401 2 3.8 1.0104 6.3
Japan Ikata 561 3 6.0 8.3103 5.1
Japan Genkai 755 4 10.1 7.8103 4.8
Japan Sendai 830 2 5.3 3.4103 2.1
Japan Tomari 783 2 3.3 2.3103 1.4
South Korea Ulchin 712 4 11.5 9.9103 6.1
South Korea Yonggwang 986 6 17.4 7.8103 4.8
South Korea Kori 735 4 9.2 7.5103 4.6
South Korea Wolsong 709 4 8.2 7.1103 4.3
Total Nominal Total Nominal - 70 181.7 1.3106 803.8
E?gt3.4MeV (Epromptgt2.6MeV)
Detailed power and fuel Composition calculation
used
From electrical power Japanese average fuel used
25
A limited range of baselines contribute to the
flux of reactor antineutrinos at Kamioka
Korean reactors 3.40.3 Rest of the world JP
research reactors 1.10.5 Japanese spent
fuel 0.040.02
26
Spectrum Distortion
27
(No Transcript)
28
(No Transcript)
29
Front End Electronics
Waveforms are recorded using Analog Transient
Waveform Digitizers (ATWDs), allowing multi p.e.
resolution
Blue raw data red pedestal green pedestal
subtracted
  • The ATWDs are self launching with a threshold
    1/3 p.e.
  • Each PMT is connected to 2 ATWDs, reducing
    deadtime
  • Each ATWD has 3 gains (20, 4, 0.5), allowing a
    dynamic range of 1mV to 1V

ADC counts (120 mV)
Samples (1.5ns)
30
The KamLAND Collaboration
31
KamLANDtimeline
  • Summer 2000 PMT installation
  • Jun-Sept 2001 Fill Liquid Scintillator
  • Jan, 2002 Begin Data Taking
  • Dec, 2002 Report 1st
    Physics Results
  • Jun 2004 Report 2nd Reactor ? Results
  • Sept 2005 Report geoneutrino evidence

32
DE/E 6.2 /vE , Light Yield 300p.e./MeV
DEsyst 2.0 at 2.6 MeV
33
Tagged cosmogenics can be used for calibration
t29.1ms Q13.4MeV
12B
12N
t15.9ms Q17.3MeV
µ
Fit to data shows that 12B12N 1001
34
Energy calibration uses discrete ? and 12B/12N
n-p
n-12C
68Ge
60Co
65Zn
Carefully include Birks law, Cherenkov and light
absorption/optics to obtain constants for ? and
etype depositions
s/E 6.2 at 1MeV
35
Vertexing is performed using timing from the 17
PMTs
-60 (2.6MeV)
Am/Be(8MeV)
-65 (1.1MeV)
-68 (1.0MeV)
z
36
Fraction of volume inside the fiducial radius
verified using µ-produced 12B/12N and n (assumed
uniform)
12B/12N
neutrons
37
Estimate of total volume and fiducial fraction
38
Singles Background
SourceMeasuredPredicted
14C?
210Pb 102Hz--
High Energy (e.g. µ) 0.33Hz0.33Hz
85Kr 606 Hz--
40K1.9Hz2.1Hz
208Tl 3.2Hz1.4Hz
232Th, cosmogenic 0.19Hz
39
(No Transcript)
40
Selecting antineutrinos, Epromptgt2.6MeV
5.5 m fiducial cut
  • - Rprompt, delayed lt 5.5 m
  • - ?Re-n lt 2 m
  • - 0.5 µs lt ?Te-n lt 1 ms
  • 1.8 MeV lt Edelayed lt 2.6 MeV
  • 2.6 MeV lt Eprompt lt 8.5 MeV
  • Tagging efficiency 89.8

(543.7 ton)
Balloon edge
  • In addition
  • 2s veto for showering/bad µ
  • 2s veto in a R 3m tube along track
  • Dead-time 9.7

41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
44
(No Transcript)
45
Observed Event Rates
2002-4 dataset 766.3 tonyr, Eprompt
gt 2.6 MeV Observed 258
events No-oscillation 365.2 23.7
events Background 17.6 7.2 events
accidental 2.69 0.02 9Li/8He (b, n) 4.8
0.9 fast neutron lt 0.89 13C(a,n) 10.0
7.1
46
Evidence for Reactor ne Disappearance!!
99.998 C.L.
47
Systematic
Scintillator volume 2.1
Fiducial fraction 4.2
Energy threshold 2.3
Cuts efficiency 1.6
Live time 0.06
Reactor Pthermal 2.1
Fuel composition 1.0
Time lag 0.01
Antineutrino spectrum 2.5
Antineutrino x-section 0.2
Total 6.5
48
Ratio of Measured and Expected ne Flux from
Reactor Neutrino Experiments
49
Oscillation Effect
50
(No Transcript)
51
Correlation with reactor power variation
52
KamLAND best fit Dm2 7.9 x 10-5 eV2 tan2q
0.45
53

54
Combined fit with solar neutrino data
Dm27.90.6-0.5x10-5 eV2 tan2q0.400.10-0.07
55
Solar Neutrino Results
Open circles combined best fit Closed circles
experimental data
56
(No Transcript)
57
Geoneutrinos the early history
58
More recent references
59
Geoneutrinos
  • U/Th/K in crust/mantle
  • - amount of activity
  • - distribution
  • Energy budget heat generation
  • - plate tectonics
  • - magnetic field
  • Structure of earths core
  • - constrain models
  • - georeactor?

60
(No Transcript)
61
(No Transcript)
62
Inside the Earth
Region Thickness (km )
Continental crust 38 (20 70)
Oceanic crust 6-8
Upper Mantle 600
Lower Mantle 2300
Core 3500
63
U/Th Distribution
64
Geoneutrino spectrum
65
The predicted sources of geoneutrinos
66
KamLAND Data
13C(a,n)
Reactor n
Randoms
U
Th
67
Confidence Intervals
68
The press was interesting
Hindustan Times, August 8, 2005
69
And finally
70
KamLAND Future
  • Precision Reactor Neutrino Measurements
  • - 4p calibration system
  • - refine analysis methods
  • - more statistics
  • Supernova detection
  • Precision Solar Neutrino Measurements
  • - radiopurity
  • - low energy threshold
  • More precise geoneutrino measurement

71
Neutrino-proton elastic scattering
??, ?? ,??, ??
?e
?e
72
(No Transcript)
73
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com