Transformed Component Analysis: Joint Estimation of Image Components and Transformations - PowerPoint PPT Presentation

About This Presentation
Title:

Transformed Component Analysis: Joint Estimation of Image Components and Transformations

Description:

Transformed Component Analysis: Joint Estimation of Image Components and Transformations ... Layered motion: Adelson,Black,Blake,Jepson,Wang, Weiss ... – PowerPoint PPT presentation

Number of Views:34
Avg rating:3.0/5.0
Slides: 63
Provided by: nec87
Category:

less

Transcript and Presenter's Notes

Title: Transformed Component Analysis: Joint Estimation of Image Components and Transformations


1
Transformed Component Analysis Joint Estimation
of Image Components and Transformations
  • Brendan J. Frey
  • Computer Science, University of Waterloo, Canada
  • Beckman Institute ECE, Univ of Illinois at
    Urbana
  • Nebojsa Jojic
  • Beckman Institute, University of Illinois at
    Urbana

2
Subspace models of imagesExample Image, R 1200
f (y, R 2)
Shut eyes
Frown
3
Generative density modeling
  • Find a probability model that
  • reflects desired structure
  • randomly generates plausible images,
  • represents the data by parameters
  • ML estimation
  • p(imageclass) used for recognition, detection,
    ...

4
Factor analysis (generative PCA)
The density of the subspace point y is p(y)
N(y 0, I)
y
5
Factor analysis (generative PCA)
p(y) N(y 0, I)
y
The density of pixel intensities z given subspace
point y is p(zy) N(z mLy, F)
z
Manifold f (y) mLy, linear
6
Factor analysis (generative PCA)
p(y) N(y 0, I)
y
p(zy) N(z mLy, F)
  • Parameters m, L represent the manifold
  • Observing z induces a Gaussian p(yz)
  • COVyz (LTF-1LI)-1
  • Eyz COVyz LTF-1 z

z
7
Example Hand-crafted model
SE
y
L
p(y) N(y 0, I)
Frn
p(zy) N(z mLy, F)
z
8
Example Simulation
SE
y
L
p(y) N(y 0, I)
Frn
p(zy) N(z mLy, F)
z
9
Example Simulation
SE
y
L
p(y) N(y 0, I)
Frn
p(zy) N(z mLy, F)
z
10
Example Simulation
SE
y
L
p(y) N(y 0, I)
Frn
p(zy) N(z mLy, F)
z
11
Example Simulation
SE
y
L
p(y) N(y 0, I)
Frn
p(zy) N(z mLy, F)
z
12
Example Simulation
SE
y
L
p(y) N(y 0, I)
Frn
p(zy) N(z mLy, F)
z
13
Example Simulation
SE
y
L
p(y) N(y 0, I)
Frn
p(zy) N(z mLy, F)
z
14
Example Simulation
SE
y
L
p(y) N(y 0, I)
Frn
p(zy) N(z mLy, F)
z
15
Example Simulation
SE
y
L
p(y) N(y 0, I)
Frn
p(zy) N(z mLy, F)
z
16
Example Inference
SE
y
L
Frn
z
Images from data set
17
Example Inference
SE
y
L
Frn
z
Images from data set
18
Example Inference
SE
y
p(yz)
L
Frn
z
Images from data set
19
Example Inference
SE
y
L
Frn
z
Images from data set
20
Example Inference
SE
y
L
Frn
z
Images from data set
21
Example Inference
SE
y
p(yz)
L
Frn
z
Images from data set
22
EM algorithm for ML Learning
  • Initialize m, L and F to small, random values
  • E Step
  • For each training case z(t), infer
  • q(t)(y) p(yz(t))
  • M Step
  • Compute m new, F new and Lnew that maximize
  • St E log p(y) p(z(t)y) ,
  • where E is wrt q(t)(y)
  • Each iteration increases log p(Data)

23
Kind of data were interested in
Even after tracking, the features still have
unknown positions, rotations, scales, levels of
shearing, ...
24
ProblemFactor analysis and PCA aresensitive to
spatial transformations, eg translation
Swap Pix 1 and 2 in 1/2 of cases
Pix 2
Pix 1
25
Oneapproach
Images
Labor
Normalization
Normalized images
Pattern Analysis
26
Anotherapproach
27
Yet anotherapproach
Images
Extract transformation-invariant features
Transformation- invariant data
  • Difficult to work with
  • May hide useful features

Pattern Analysis
28
Ourapproach
Images
Joint Normalization and Pattern Analysis
29
What transforming an image does in the vector
space of pixel intensities
  • A continuous transformation moves an image, ,
    along a continuous curve
  • Our subspace model should assign images near this
    nonlinear manifold to the same point in the
    subspace

30
Tractable approaches to modeling the
transformation manifold
  • \ Linear approximation
  • - good locally
  • Discrete approximation
  • - good globally

31
Related work
  • Generative models
  • Local invariance PCA, Turk, Moghaddam, Pentland
    (96) factor analysis, Hinton, Revow, Dayan,
    Ghahramani (96) Frey, Colmenarez, Huang (98)
  • Layered motion Adelson,Black,Blake,Jepson,Wang,
    Weiss
  • Learning discrete representations of generative
    manifolds
  • Generative topographic maps, Bishop,Svensen,Willia
    ms (98)
  • Discriminative models
  • Local invariance tangent distance, tangent prop,
    Simard, Le Cun, Denker, Victorri (92-93)
  • Global invariance convolutional neural networks,
    Le Cun, et al (98) multiresolution tangent dist,
    Vasconcelos et al (98)

32
Adding transformation as a discrete latent
variable
  • Say there are N pixels
  • We assume we are given a set of sparse N x N
    transformation generating matrices G1,,Gl ,,GL
  • These generate points
  • from point

33
Transformed Component Analysis
The density of the subspace point y is p(y)
N(y 0, I)
y
34
Transformed Component Analysis
p(y) N(y 0, I)
y
The probability of latent image z given subspace
point y is p(zy) N(z mLy, F)
z
35
Transformed Component Analysis
p(y) N(y 0, I)
y
p(zy) N(z mLy, F)
The probability of transf l 1,2, is P(l) rl
z
l
36
Transformed Component Analysis
p(y) N(y 0, I)
y
p(zy) N(z mLy, F)
P(l) rl
z
l
The probability of observed image x is p(xz,l)
N(x Gl z , Y)
x
37
Example Hand-crafted model
G1 shift left up, G2 I, G3 shift right
up
SE
y
Frn
z
l
l 1, 2, 3
r1 r2 r3 0.33
x
38
Example Simulation
G1 shift left up, G2 I, G3 shift right
up
SE
y
Frn
z
l
x
39
Example Simulation
G1 shift left up, G2 I, G3 shift right
up
SE
y
Frn
z
l
x
40
Example Simulation
G1 shift left up, G2 I, G3 shift right
up
SE
y
Frn
z
l
x
41
Example Simulation
G1 shift left up, G2 I, G3 shift right
up
SE
y
Frn
z
l1
x
42
Example Simulation
G1 shift left up, G2 I, G3 shift right
up
SE
y
Frn
z
l1
43
Example Simulation
G1 shift left up, G2 I, G3 shift right
up
SE
y
Frn
z
l
x
44
Example Simulation
G1 shift left up, G2 I, G3 shift right
up
SE
y
Frn
z
l
x
45
Example Simulation
G1 shift left up, G2 I, G3 shift right
up
SE
y
Frn
z
l
x
46
Example Simulation
G1 shift left up, G2 I, G3 shift right
up
SE
y
Frn
z
l3
x
47
Example Simulation
G1 shift left up, G2 I, G3 shift right
up
SE
y
Frn
z
l3
x
48
Example Inference
G1 shift left up, G2 I, G3 shift right
up
SE
y
Frn
z
l
Training data
x
49
Example Inference
G1 shift left up, G2 I, G3 shift right
up
SE
y
Frn
z
l
Training data
x
50
Example Inference
G1 shift left up, G2 I, G3 shift right
up
SE
SE
SE
y
y
y
Frn
Frn
Frn
P(l1x) .01
P(l3x) .98
P(l2x) .01
z
z
z
l3
l2
l1
x
x
x
51
EM algorithm for TCA
  • Initialize m, L, F, r, Y to random values
  • E Step
  • For each training case x(t), infer
  • q(t)(l,z,y) p(l,z,y x(t))
  • M Step
  • Compute mnew,Lnew,F new,rnew,Ynew to maximize
  • St E log p(y) p(zy) P(l) p(x(t)z,l),
  • where E is wrt q(t)(l,z,y)
  • Each iteration increases log p(Data)

52
A tough toy problem
  • 144, 9 x 9 images
  • 1 shape (pyramid)
  • 3-D lighting
  • cluttered
  • background
  • 25 possible
  • locations

53
1st 8 principal components
  • TCA
  • 3 components
  • 81 transformations
  • - 9 horiz shifts
  • - 9 vert shifts
  • 10 iters of EM
  • Model generates
  • realistic examples

F
Y
m
L1L2 L3
54
Expression modeling
  • 100 16 x 24 training
  • images
  • variation in expression
  • imperfect alignment

55
PCA Mean 1st 10 principal components
56
Fantasies from FA model
Fantasies from TCA model
57
Modeling handwritten digits
  • 200 8 x 8 images of
  • each digit
  • preprocessing
  • normalizes vert/horiz
  • translation and scale
  • different writing angles
  • (shearing) - see 7

58
TCA - 29 shearing translation combinations
- 10 components per digit - 30
iterations of EM per digit
Transformed means
Mean of each digit
59
FA Mean 10 components per digit
TCA Mean 10 components per digit
60
Classification Performance
  • Training 200 cases/digit, 20 components, 50 EM
    iters
  • Testing 1000 cases, p(xclass) used for
    classification
  • Results
  • Method Error rate
  • k-nearest neighbors (optimized k) 7.6
  • Factor analysis 3.2
  • Tranformed component analysis 2.7
  • Bonus P(lx) infers the writing angle!

61
Wrap-up
  • MATLAB scripts www.cs.uwaterloo.ca/frey
  • Other domains audio, bioinformatics,
  • Other latent image models, p(z)
  • clustering (mixture of Gaussians) (CVPR99)
  • mixtures of factor analyzers (NIPS99)
  • time series (CVPR00)

62
Wrap-up
  • DiscreteLinear Combination Set some components
    equal to derivatives of m wrt transformations
  • Multiresolution approach
  • Fast variational methods, belief propagation,...
Write a Comment
User Comments (0)
About PowerShow.com