A%20global%20Carbon%20Cycle%20Data%20Assimilation%20System%20(CCDAS)%20to%20infer%20atmosphere-biosphere%20CO2%20exchanges%20and%20their%20uncertainties - PowerPoint PPT Presentation

About This Presentation
Title:

A%20global%20Carbon%20Cycle%20Data%20Assimilation%20System%20(CCDAS)%20to%20infer%20atmosphere-biosphere%20CO2%20exchanges%20and%20their%20uncertainties

Description:

A global Carbon Cycle Data Assimilation System (CCDAS) to infer atmosphere ... Extend approach to a prognostic ocean carbon cycle model. ... – PowerPoint PPT presentation

Number of Views:47
Avg rating:3.0/5.0

less

Transcript and Presenter's Notes

Title: A%20global%20Carbon%20Cycle%20Data%20Assimilation%20System%20(CCDAS)%20to%20infer%20atmosphere-biosphere%20CO2%20exchanges%20and%20their%20uncertainties


1
A global Carbon Cycle Data Assimilation System
(CCDAS) to infer atmosphere-biosphere CO2
exchanges and their uncertainties
  • Marko Scholze1, Peter Rayner2, Wolfgang Knorr1,
    Thomas Kaminski3, Ralf Giering3 Heinrich
    Widmann1
  • TransCom Tsukuba, 2004

2
Overview
  • CCDAS set-up
  • Calculation and propagation of uncertainties
  • Data fit
  • Global results
  • New developments
  • Conclusions and outlook

3
Combined top-down/bottom-up MethodCCDAS
Carbon Cycle Data Assimilation System
Forward Modeling Parameters gt Misfit
Misfit to observations
Atmospheric Transport Model TM2
Biosphere Model BETHY
4
CCDAS set-up
  • 2-stage-assimilation
  • AVHRR data
  • (Knorr, 2000)
  • Atm. CO2 data
  • Background fluxes
  • Fossil emissions (Marland et al., 2001 und Andres
    et al., 1996)
  • Ocean CO2 (Takahashi et al., 1999 und Le Quéré et
    al., 2000)
  • Land-use (Houghton et al., 1990)

Transport Model TM2 (Heimann, 1995)
5
Station network
41 stations from Globalview (2001), no
gap-filling, monthly values 1979-1999. Annual
uncertainty values from Globalview (2001).
6
Terminology
GPP Gross primary productivity (photosynthesis) NP
P Net primary productivity (plant growth) NEP Net
ecosystem productivity (undisturbed C
storage) NBP Net biome productivity (C storage)
7
BETHY(Biosphere Energy-Transfer-Hydrology Scheme)
?lat, ?lon 2 deg
  • GPP
  • C3 photosynthesis Farquhar et al. (1980)
  • C4 photosynthesis Collatz et al. (1992)
  • stomata Knorr (1997)
  • Plant respiration
  • maintenance resp. f(Nleaf, T) Farquhar, Ryan
    (1991)
  • growth resp. NPP Ryan (1991)
  • Soil respiration
  • fast/slow pool resp., temperature (Q10
    formulation) and soil moisture
    dependent
  • Carbon balance
  • average NPP b average soil resp. (at each grid
    point)

?t1h
?t1h
?t1day
blt1 source bgt1 sink
8
Calibration Step
Flow of information in CCDAS. Oval boxes
represent the various quantities. Rectangular
boxes denote mappings between these fields.
9
Prognostic Step
Oval boxes represent the various quantities.
Rectangular boxes denote mappings between these
fields.
10
Methodology
11
Calculation of uncertainties
  • Error covariance of parameters
  • Adjoint, Hessian, and Jacobian code generated
    automatically from model code by TAF

12
Gradient Method
Figure from Tarantola, 1987
13
Data fit
14
Seasonal cycle
15
Global Growth Rate
Atmospheric CO2 growth rate
Calculated as
16
Parameters I
  • 3 PFT specific parameters (Jmax, Jmax/Vmax and b)
  • 18 global parameters
  • 57 parameters in all plus 1 initial value
    (offset)

Param Initial Predicted Prior unc. () Unc. Reduction ()
fautleaf c-cost Q10 (slow) t (fast) 0.4 1.25 1.5 1.5 0.24 1.27 1.35 1.62 2.5 0.5 70 75 39 1 72 78
(TrEv) (TrDec) (TmpDec) (EvCn) (DecCn) (C4Gr) (Crop) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.44 0.35 2.48 0.92 0.73 1.56 3.36 25 25 25 25 25 25 25 78 95 62 95 91 90 1
17
Parameters II
Relative Error Reduction
18
Some values of global fluxes
Value Gt C/yr
1980-2000 (prior) 1980-2000 1980-1990 1990-2000
GPP Growth resp. Maint. resp. NPP 135.7 23.5 44.04 68.18 134.8 22.35 72.7 40.55 134.3 22.31 72.13 40.63 135.3 22.39 73.28 40.46
Fast soil resp. Slow soil resp. NEP 53.83 14.46 -0.11 27.4 10.69 2.453 27.6 10.71 2.318 27.21 10.67 2.587
19
Carbon Balance
net carbon flux 1980-2000 gC / (m2 year)
20
Uncertainty in net flux
Uncertainty in net carbon flux 1980-200 gC / (m2
year)
21
Uncertainty in prior net flux
Uncertainty in net carbon flux from prior values
1980-2000 gC / (m2 year)
22
NEP anomalies global and tropical
23
IAV and processes
Major El Niño events
Major La Niña event
Post Pinatubo period
24
Interannual Variability I
ENSO and terr. biosph. CO2 Correlations seems
strong with a maximum at 4 months lag, for both
El Niño and La Niña states.
Lag correlation (low-pass filtered)
25
Interannual Variabiliy II
Lagged correlation on grid-cell basis at 99
significance
correlation coefficient
26
Low-resolution CCDAS
  • A fully functional low resolution version of
    CCDAS, BETHY runs on the TM2 grid (appr. 10 x
    7.8)
  • 506 vegetation points compared to 8776
    (high-res.)
  • About a factor of 20 faster than high-res.
    Version -gt ideal for developing, testing and
    debugging
  • On a global scale results are comparable (can be
    used for pre-optimising)

27
Including the ocean
  • A 1 GtC/month pulse lasting for three months is
    used as a basis function for the optimisation
  • Oceans are divided into the 11 TransCom-3 regions
  • That means 11 regions 12 months 21 yr / 3
    months 924 additional parameters
  • Test case
  • all 924 parameters have a prior of 0. (assuming
    that our background ocean flux is correct)
  • each pulse has an uncertainty of 0.1 GtC/month
    giving an annual uncertainty of 2 GtC for the
    total ocean flux

28
Including the ocean
High resolution standard model
Low resolution model
Low-res incl. ocean basis functions
29
Conclusions
  • CCDAS with 58 parameters can fit 20 years of CO2
    concentration data 15 directions can be
    resolved
  • Terr. biosphere response to climate fluctuations
    dominated by El Nino.
  • A tool to test model with uncertain parameters
    and to deliver a posterior uncertainties on
    parameters and prognostics.
  • With the ability of including ocean basis
    functions in the optimisation procedure CCDAS
    comprises a normal atmospheric inversion.

30
Future
  • Explore more parameter configurations.
  • Include missing processes (e.g. fire).
  • Upgrade transport model and extend data.
  • Include more data constraints (eddy fluxes,
    isotopes, high frequency data, satellites) -gt
    scaling issue.
  • Projections of prognostics and uncertainties into
    future.
  • Extend approach to a prognostic ocean carbon
    cycle model.
Write a Comment
User Comments (0)
About PowerShow.com